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Abstract

The past few years have seen an explosion of interest in using machine learning to make robots capable

of learning a diverse set of tasks. These robots use Reinforcement Learning to learn detailed sub-second

interactions, but consequently require large amounts of data for each task. In this thesis we explore how

Reinforcement Learning can be combined with Transfer Learning to re-use data across tasks. We begin by

reviewing the start of Multi-Task and Meta RL and describe the motivations for using Transfer Learning.

Then, we describe a basic framework for using Transfer Learning to efficiently learn multiple tasks, and

show how it requires predicting how effectively transfer can be performed across tasks. Next, we present a

simple rule, based in information theory, for predicting the effectiveness of Cross-Task Transfer. We discuss

the theoretical implications of that rule, and show various quantitative evaluations of it. Then, we show

two directions of work making use of our insights to perform efficient Transfer Reinforcement Learning.

The first of these directions uses Cross-Task Co-Learning and Plan Conditioned Behavioral Cloning to

share skill representations produced by a Large Language Model, and it able to learn many tasks from a

single demonstration each in a simulated environment. The second of these directions uses Two-Phase KL

Penalization to enforce a (potentially off-policy) trust region. These advances in Transfer RL may enable

robots to be used in a wider range of applications, and may also inform applying Transfer RL outside of

robotics.

xii



Chapter 1

Introduction

Machine Learning is a family of techniques that are of extreme interest to the future of robotics. Whenever

perception of ambiguous signals, such as camera or LIDAR feeds, is essential to decision making, machine

learning has become the dominant paradigm for processing such signals. More recently, there has been

interest in not only perceiving the world using machine learning, but also using machine learning to act

and make (sequential) decisions. The dominant paradigms for learning how to make sequential decisions

are Reinforcement Learning and Imitation Learning. Both of these paradigms hold the promise of robotic

systems that can act reliably in complex unstructured environments. These robotic systems might be able

to navigate cluttered environments, manipulate a wide variety of unique objects, and perform open-ended

multi-step stacks.

However, in order to provide this high degree of flexibility, it is necessary to learn how to make fine-

grained decisions, on a sub-second scale (what some roboticists have called the “dexterity problem”). Un-

fortunately, learning decisions at this granularity currently requires significant amounts of information for

both Imitation Learning and Reinforcement Learning. Furthermore, collecting that information is particu-

larly expensive, since information about the outcomes of a robot’s decisions is only directly available from

running that robot. These two factors combine to make data cost the primary (although far from only)

challenge of this approach.
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Many different approaches to addressing the data limitations of sequential decision making for robotics

have been proposed, including training in simulation, transfer learning from internet data, and learning

re-usable cross-task skills. This thesis investigates the promise and limitations of using using cross-task

Transfer Learning to address the data challenge. Although cross-task Transfer Learning can be seen as

a generalization of other proposed methods, such as “sim2real” transfer, this work is not focused on any

particular type of Transfer Learning. Instead, the focus in this thesis is on general lessons that should apply

to a wide variety of Transfer Learning scenarios.

1.1 Contributions

In this work we provide the following contributions, organized by chapter.

1. Exploiting Geometry and Time This chapter demonstrates an example of cross-task Transfer from

a (very) small number of examples. The demonstrated transfer results depend on different tasks

being simple geometric transformations of each other. However, it serves as a simple introductory

example, and also demonstrates several of the challenges in applying Transfer Learning to sequential

decisions problems. Specifically, this work demonstrates the importance of being able to re-train the

final decision making layers, the difficulty of combining models from multiple base tasks, and the

potential from transferring from a single demonstration, even when that demonstration cannot capture

all variation in the target task.

2. The Transfer Cost Matrix and Single-Task Transfer This chapter introduces the idea of measuring

how tasks are related to each other using the amount of data needed to re-train from one task to

another. Contrary to most prior work on transfer learning in a supervised setting, this relationship is

shown to be asymmetrical. This chapter also establishes that Transfer RL has the potential to compete
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with Multi-Task RL. Finally, this chapter introduces an inference algorithm for efficiently learning a

set of tasks using Transfer RL.

3. Predicting Transfer Costs with Behavior Distributions This chapter proposes a simple rule for

predicting transfer costs, which explains the asymmetrical relationship found in the previous chapter.

Detailed empirical experiments show that this rule can be an effective tool for predicting cost-task

transfer in the setting being considered. Furthermore, a theory is proposed explaining why this rule

functions, which predicts that information gain throughout RL training is constant. Additional exper-

iments are performed, which show results consistent with this prediction. The theory also predicts

that addressing “forgetfulness” in Transfer RL may be able to significantly improve the performance

of Transfer RL algorithms.

4. Conditionally Combining Robot Skills using Large Language Models This chapter provides a new

benchmark, Language-World, for studying Language and Reinforcement Learning in a robotics do-

main. Secondly, it demonstrates an algorithm, Plan Conditioned Behavioral Cloning, which is able to

perform generalization on a significant porition of Language-World from as little as a single demon-

stration per task, by leveraging a combination of cross-task transfer and a high-level plan produced

by a Large Language Model. Thirdly, it proposes a cross-task co-learning method of balanced mini-

batches that is easy to implement and is able to learn a large number of Meta-World tasks from only

ten demonstrations per task. These imitation learning results are state of the art at this time.

5. Guaranteed Trust Region Optimization via Two-Phase KL Penalization This chapter proposes a

trust-region Reinforcement Learning algorithm called Fixup Policy Optimization, or FixPO. FixPO

combines the strong guarantees of Trust Region Policy Optimization with the efficient runtime perfor-

mance of Proximal Policy Optimization, while experiencing fewer decreases in policy performance
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during training. More pertinent to this thesis, FixPO is able to enforce trust regions using off-policy

data, offering a direction for efficiently addressing forgetfulness in Transfer RL.

1.2 Chapter Summaries

1. Exploiting Geometry and Time In this chapter, we explore possible methods for multi-task transfer

learning which seek to exploit the shared physical structure of robotics tasks. Specifically, we train

policies for a base set of pre-training tasks, then experiment with adapting to new off-distribution

tasks, using simple architectural approaches for re-using these policies as black-box priors. These ap-

proaches include learning an alignment of either the observation space or action space from a base to

a target task to exploit rigid body structure, and methods for learning a time-domain switching policy

across base tasks which solves the target task, to exploit temporal coherence. We find that combin-

ing low-complexity target policy classes, base policies as black-box priors, and simple optimization

algorithms allows us to acquire new tasks outside the base task distribution, using small amounts of

offline training data.

Presented as a poster at NeurIPS 2020 workshops (Challenges of Real World RL, Offline RL) [133].

For more details, please see Chapter 3.

2. The Transfer Cost Matrix and Single-Task Transfer In order to be effective general purpose ma-

chines in real world environments, robots not only will need to adapt their existing manipulation

skills to new circumstances, they will need to acquire entirely new skills on-the-fly. One approach

to achieving this capability is via Multi-task Reinforcement Learning (MTRL). Most recent work in

MTRL trains a single policy to solve all tasks at once. In this work, we investigate the feasibility of

instead training separate policies for each task, and only transferring from a task once the policy for it

has finished training. We describe a method of finding near optimal sequences of transfers to perform
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in this setting, and use it to show that performing the optimal sequence of transfer is competitive with

other MTRL methods on the MetaWorld MT10 benchmark. Lastly, we describe a method for finding

nearly optimal transfer sequences during training that is able to improve on training each task from

scratch.

Oral presentation at IROS 2022 [135], poster presentation at RLDM 2022. For more details, please

see Chapter 4.

3. Transfer Cost Rule In this chapter, we propose a rule that allows predicting the rate at which a policy

will transfer from one task to another. This allows iterated single-task transfer, as described in the

preceding chapter, to be more practical. Moreover, in this chapter we describe information theoretical

reasons we expect this rule to function, and discuss the implications of that theory. This results in

several hypotheses, which we explore. The first of these hypotheses is that the efficiency of existing

Deep Reinforcement Learning algorithms are limited by a roughly constant factor of information

theoretically optimal training. This results in bounds based on information theory being effective,

even if the algorithms themselves are far from the true optimal bound. The second of these hypotheses

is that the expected information gain from running a policy for a fixed amount of time is constant

throughout training and independent of the intiial policy. We show experimental results that suggest

both of these hypotheses are true.

Work not yet submitted for peer review. For more details, please see Chapter 5.

4. Conditionally Combining Robot Skills using Large Language Models This chapter combines

two contributions. First, we introduce an extension of the Meta-World benchmark, which we call

“Language-World,” which allows a large language model to operate in a simulated robotic envi-

ronment using semi-structured natural language queries and scripted skills described using natural
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language. By using the same set of tasks as Meta-World, Language-World results can be easily com-

pared to Meta-World results, allowing for a point of comparison between recent methods using Large

Language Models (LLMs) and those using Deep Reinforcement Learning. Second, we introduce a

method we call Plan Conditioned Behavioral Cloning (PCBC), that allows finetuning the behavior of

high-level plans using end-to-end demonstrations. Using Language-World, we show that PCBC is

able to achieve strong performance in a variety of few-shot regimes, often achieving task generaliza-

tion with as little as a single demonstration. We have made Language-World available as open-source

software at https://github.com/krzentner/language-world/.

Based on work under review for ICRA 2024 [132]. For more details, please see Chapter 6.

5. Guaranteed Trust Region Optimization via Two-Phase KL Penalization On-policy reinforcement

learning (RL) has become a popular framework for solving sequential decision problems due to its

computational efficiency and theoretical simplicity. Some on-policy methods guarantee every policy

update is constrained to a trust region relative to the prior policy to ensure training stability. These

methods often require computationally intensive non-linear optimization or require a particular form

of action distribution. In this work, we show that applying KL penalization alone is nearly sufficient to

enforce such trust regions. Then, we show that introducing a “fixup” phase is sufficient to guarantee

a trust region is enforced on every policy update while adding fewer than 5% additional gradient

steps in practice. The resulting algorithm, which we call FixPO, is able to train a variety of policy

architectures and action spaces, is easy to implement, and produces results competitive with other

trust region methods.

Based on currently unpublished work submitted for peer review [134]. For more details, please see

Chapter 7.
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Chapter 2

Related Work

In this chapter we list related work organized by the chapter they are relevant to.

2.1 Towards Exploiting Geometry and Time for Fast Off-Distribution Adaptation

in Multi-Task Robot Learning

Both recent [91][90] and less-recent [95],[29] work have explored automatically identifying and exploiting

structure, especially symmetries, in general MDPs to speed learning, outside of the transfer learning set-

ting. Structural priors, such as symmetry, temporal coherence, and rigid body transformations, have been

previously used successfully to adapt deep learning methods to the robotics domain [56][14]. Prior works in

this area have mostly focused on learning sparse and informative state representations, rather than adapting

policies to new tasks using these priors.

Time-domain composition of sub-policies has been studied extensively in hierarchical reinforcement

learning, most notably by works using the options framework [113] in which RL sub-policies (options)

choose their own termination conditions. Other works have studied a problem setting that is more compa-

rable to that of Chapter 3, in which the subpolicies are chosen by a higher-level control process [40][29].

Most work in this area has focused on fast transfer by conditioning learned policies on pre-defined goal

spaces [80] or grounded representations such as language [54] or known object identities [136].
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The cross-entropy method [97] has been used both for direct policy search [77], and more recently as an

inner search component of value-based RL algorithms, such as to choose actions given a continuous Q-value

approximation [60], and to regularize a policy gradient-based action selection algorithm [104].

The work presented in Chapter 3 is most similar in spirit to Residual Policy Learning [107], which also

uses a pre-trained policy in one task for structured exploration in another task, and uses a deterministic

policy target model class of the form πtarget(s) = πbase(s) + fδ(s) to facilitate fast adaptation.

2.2 Efficient Multi-Task Learning via Iterated Single-Task Transfer

Reinforcement learning for robotics Reinforcement learning (RL) for learning robotic capabilities has

been well studied [65, 76, 74, 109]. The recent resurgence of interest in neural networks for use in supervised

learning domains has resulted in a resurgence of interest in neural networks for RL [34, 79].

Transfer and curriculum learning for robotics Transfer learning is a heavily-studied problem outside

the robotics domain [24, 22, 21]. Many approaches have been proposed for rapid transfer of robot policies

to new domains, including residual policy learning [107], simultaneously learning across multiple goals and

tasks [98], methods which use model-based RL [33, 127, 81, 41], and goal-conditioned RL [2]. Similarly,

work in robotic meta-learning focuses on learning representations which can be quickly adapted to new

dynamics [18, 31] and objects [52, 129, 10], but has thus far been less successful for task-task transfer [131].

Like [115], the approach described in Chapter 4 relies on rapidly adapting policies for an already-

acquired task into a policy for a new task. Much like [15], and [69], we use experiments to analyze different

transfer techniques from a geometric perspective on the task-task adaptation problem. As in prior work [75,

128], we observe that the selection of pre-training tasks is essential for preparing RL agents for rapid adap-

tation. Significant work on using cross-task transfer to accelerate learning also exists within the Curriculum

Learning literature [112], including within the context of robotics [62].
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Reusable skill libraries for efficient learning and transfer Learning reusable skill libraries is a classic

approach [39] for efficient acquisition and transfer of robot motion policies. Prior to the popularity of DRL-

based methods, Associative Skill Memories [86] and Probabilistic Movement Primitives [99, 139] were

proposed for acquiring a set of reusable skills for robotic manipulation. In addition to manipulation [126,

124, 67], DRL-based skill decomposition methods are popular today for learning and adaptation in loco-

motion and whole-body humanoid control [87, 43, 78, 72]. [44] proposed learning reusable libraries of

robotic manipulation skills in simulation using RL and learned latent spaces, and [59] showed these skill

latent spaces could be used for efficient simulation-to-real transfer and rapid hierarchical task acquisition

with real robots.

2.3 Predicting Transfer Costs with Behavior Distributions

Although there is a rich history of proving worst-case sample complexity of RL algorithms [55, 25, 23],

there have been relatively little work into the problem of predicting the performance of deep RL algorithms

in practice.

Even within the context of single-task, non-transfer RL algorithms, all previous works the authors are

aware of have focused on predicting if a given algorithm will converge to an optimal policy, and not pre-

dicting the time to converge to a sufficient policy, as studied here. This is an area of active research. Recent

methods, such as those proposed in [70], can achieve correlation values in the 60%-80% range on some

benchmarks.

Significantly more work was been done analyzing the effectiveness of transfer in a supervised learning

setting [114, 8, 47] However, most of this work analyzes the effectiveness in a specific setting, such as

language modelling or image recognition [57, 106, 125]. A central idea of many of these works [125], is

that transfer effectiveness relies on mutual information between tasks, which is straightforward to define for
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supervised learning tasks. The work presented in Chapter 5 can be seen as proposing one way of extending

these ideas of mutual information to deep Reinforcement Learning.

2.4 Conditionally Combining Robot Skills using Large Language Models

Large Language Models Recent work in language modeling has resulted in “large language models”

(LLMs), which contain billions of neural network parameters and demonstrate powerful zero and few-shot

reasoning capabilities. In this work, we experiment with using three such LLMs: GPT-3 [13], GPT-3.5 [38],

and PaLM 2 [17, 37]. This is an area of active research, and additional LLMs have become available since

we began this work, including GPT-4 [83], LLaMa [117], and Claude [6]. Several methods to improve

the utility of LLM output for downstream tasks have also been proposed, including finetuning with RL

[85], finetuning with supervised learning [93] or improved prompting [121, 119, 138]. In this work, we

experiment with a variety of prompt formats that make use of chain-of-thought [121], which is often able to

improve the quality of LLM output with minimal effort.

Deep Reinforcement Learning (RL), End-to-End (E2E) Learning for Robotics Learning robotic capa-

bilities via RL has been studied for decades [65, 76, 74, 109]. More recent advances in neural networks that

allow feature learning and fitting to complex high-dimensional functions have allowed end-to-end training

of neural policies using RL [34, 79] and imitation learning (IL) [137, 20]. A number of simulated envi-

ronments for benchmarking these end-to-end methods on robotic tasks exist, including Meta-World [131],

which we extend in this paper.

Skills, Options, and Hierarchy in E2E Learning Learning reusable skill libraries is a classic approach [39]

for efficient acquisition and transfer of robot motion policies. Prior to the popularity of E2E methods, several

methods [86, 99, 139] were proposed for acquiring a set of reusable skills for robotic manipulation. More
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recent E2E methods have been proposed for learning manipulation skills [126, 124, 67] as well as skill de-

composition methods for learning and adaptation in locomotion and whole-body humanoid control [87, 43,

78, 72, 44, 59]. Although these methods have demonstrated some improvements to the sample efficiency of

RL, significant improvements in complex environments remain elusive.

Large Language Models as Agents Several recent works attempt to produce agents with useful zero-

shot behavior by leveraging the generalization capabilities of large language models while mitigating their

weaknesses at multi-step reasoning. Some approaches, such as [3, 108, 120], use an LLM to choose from a

set of high-level actions described with natural language. Other approaches, such as [73, 92], use an LLM

to generate code which is then executed to produce behavior. The method proposed in this paper exists in

a middle ground between these approaches, where an LLM is used to generate code in a particular format

that allows actions to be described with natural language, and the behavior of the program (i.e. conditional

plan) can be tuned E2E.

2.5 Guaranteed Trust Region Optimization via Two-Phase KL Penalization

Trust Region Methods The algorithm presented in this work follows in large part from the theory of trust

region reinforcement learning methods, namely [100] and [102], combined with more recent insights from

[5]. Work on FixPO was also guided by publications on PPO variants, such as [19], from which the term

“phase” was borrowed, and [46], which analyzes the effect of β in relation to batch size. Works that analyze

various aspects of PPO were also extremely useful, including [27], which provides a detailed analysis of the

relationship between PPO and TRPO, and [48], which examines several aspects of PPO in detail, such as

the action distribution parameterization and effect of different KL penalties. More recently, [49] provides

an analysis of the effect of many proposed changes to PPO which was invaluable in this research.
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Besides [100], other methods for guaranteeing constrained updates have been proposed specifically for

Gaussian policies [4, 84].

Lagrangian Methods Although we are not aware of any comprehensive survey on the topic, loss func-

tions structured similarly to Augmented Lagrangian methods [45] are frequently used in various Deep RL

methods, including [111, 5]. Our proposed Lβ is similar to the losses proposed in those works, with two

additions we describe in Section 7.2.1. Lagrangian methods are also used in some off-policy Deep RL work,

such as for automatic entropy tuning in [42] and constraining offline Q estimates in [68]. There are several

applications of Lagrangian methods in Safe Deep RL works [16, 1], Imitation Learning and Inverse RL [88],

Differentiable Economics [26, 50], and Multi-Agent RL [51].

KL Regularized RL Outsides of trust region methods, using the KL divergence to regularize RL has been

a long-standing method [96], and continues to be used in recent methods such as [66], [118], and [36]. KL

regularization is also a critical component of several recent offline RL methods, such as [123], [82], and

[53].

Benchmarks and Libraries The primary benchmarks used in this work were the Mujoco [116] bench-

marks from OpenAI Gym [12], and the Meta-World [131] benchmarks. In most of our experiments, we make

use of code from Tianshou [122], although we used stable-baselines3 [94] in earlier experiments. We

also used sample-factory [89] to run experiments on tasks from the DMLab-30 [7] benchmark.
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Chapter 3

Towards Exploiting Geometry and Time for Fast Off-Distribution

Adaptation in Multi-Task Robot Learning

3.1 Introduction

Real world robotics tasks all share the rich and predictable structure imposed by the laws of physics and

the nature of the physical world. The breakout success of deep learning approaches to domains such as

computer vision, natural language processing, and recommender systems was precipitated by the design

of model architectures which exploit the structure of the data in these domains, such as convolutional,

auto-regressive, and graph neural networks respectively. Despite these strong precedents, research in deep

reinforcement learning (RL) and imitation learning (IL) for robotics has seen comparatively few attempts

to design robotics-specific architectures transfer learning methods which exploit the structure of robotics

tasks. We believe that multi-task robot learning in particular is likely to benefit from transfer methods which

exploit large amounts of shared physical and temporal structure between tasks, because this structure is very

likely to exist between tasks performed by a single robot design which is asked to perform many tasks in

just one or a few environments.

This chapter is based on K. R. Zentner et al. “Towards Exploiting Geometry and Time for Fast Off-Distribution Adaptation
in Multi-Task Robot Learning”. In: ArXiv abs/2106.13237 (2021). URL: https://api.semanticscholar.org/CorpusID:
229550508.
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3.2 Problem Setting

We consider a multi-task reinforcement learning (RL) or imitation learning (IL) setting, defined by a possibly-

unbounded discrete space of tasks T . Each task τ ∈ T is an infinite-horizon Markov decision process

(MDP) defined by the tuple (S,A, p, rτ ). Motivated by our application to robotics, we presume all tasks

in T share a single continuous state space S, continuous action space A, and state transition dynamics

p(s′|s, a), and so tasks are differentiated only by their reward functions rτ (s, a). Our goal is to eventually

learn policies πτ (a|s) for each of τ ∈ T which maximizes the expected total discounted return across all

tasks τ ∈ T .

Importantly, we do not presume that the learner ever has access to all tasks in T at once, or even a

representative sample thereof. Instead, we divide the lifetime of the learner into two phases. First pre-

training, in which the learner is given access to a biased subset of tasks Tbase and allowed to learn a near-

optimal policy πτ (a|s) for each task in Tbase, for a total of |Tbase| = Nbase base policies. Second, adaptation,

in which the learner is given access to data source Dtarget of trajectories for a target task τtarget /∈ Tbase and

base policies πτ∈Tbase(a|s), and must quickly acquire a high-performance target policy πtarget for the target

task. As Tbase is presumed to be a biased data-set with respect to T , this is an off-distribution multi-task

learning problem.

In this work, we presume Dtarget is static, small, and composed only of successful trajectories from an

expert, so herein we discuss a few-shot imitation learning variant of this problem.

3.3 Target Policy Classes for Structural Adaptation

In this section, we enumerate a set of low-dimensional target policy classes for fast adaptation between base

and target tasks which share similar dynamical structure. In the next section, we measure the performance
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of these model classes under few-shot adaptation using a simulated 2D car-driving environment with non-

trivial dynamics.

3.3.1 Observation Alignment

Observation alignment uses a target policy class that contains a single source policy. This target policy class

applies a transformation Tθ(s) to the observation before passing it to the base policy to generate actions. In

our experiments we use an affine (linear transformation plus bias) transformation of the observation to sim-

plify optimization, and to exploit simple geometric priors such as rigid transformation. As the optimization

process is efficient, we choose a base policy by training a T τ
θ (a) for all τ ∈ Tbase and using the lowest loss

member of the ensemble for the final target policy.

π
target
θ (a|s) = πbase(a|Tθ(s)) (3.1)

3.3.2 Action (Re-)Alignment

Like observation alignment, action alignment learns a low-dimensional affine transformation function, but

instead transforming the state input of a base policy, this function Tθ(a) transforms the action output. Like

observation alignment, we train an ensemble of these target policies for a target task, and choose the one

with the lowest loss.

π
target
θ (a|s) = πbase(Tθ(a)|s) (3.2)

We find that naive action alignment performs poorly, because the final output layer of πbase often destroys

necessary information. Action re-alignment instead uses all but the last layer of the base policy (hereafter

referred to as πbase
−1 ) to encoder the current state into a latent encoding h. Action re-alignment then uses a

learned transformation function Tθ(h) to transform that encoding into an action on the target task.
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π
target
θ (a|s) = πbase

−1 (Tθ(h)|s) (3.3)

3.3.3 Time-Domain Switching and Mixing

3.3.3.1 Mixing (Soft Switching)

In order to select actions in the target task, soft switching policy computes a state-conditioned weighting

function over the base policies, Wθ(s, τ). It then computes an action distribution as a mixture of the base

policies action distributions using that weighting.

π
target
θ (a|s) =

∑
τ∈Tbase

Wθ(s, τ)π
base,τ (a|s) (3.4)

3.3.3.2 Hard Switching

As in soft switching, this target policy class computes a state-conditioned weighting function Wθ(s, τ)

over the base policies. Unlike soft switching, the hard switching policy uses actions from only a single

base policy at any given time step. To discourage switching too often, the hard switching policy enforces

hysteresis during sampling: it maintains a state, h of the the most recently selected base policy, and continues

to use that base policy until another base policy has a weight which is ϵ larger than the current base policy.

π
target
θ (a|s, h) = πbase,h′

(a|s) (3.5)

where h′ =


h if Wθ(s, h) + ϵ > Wθ(s, τ) ∀τ ∈ τbase

argmaxτ Wθ(s, τ) otherwise
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Figure 3.1: This figure shows the performance of differ-
ent target policy classes and optimization methods us-
ing a behavioral cloning loss. The shaded regions repre-
sent a 95% confidence interval. The highest performing
methods are Action Re-Alignment with Tθ(h) trained
using SGD, and Observation Alignment with Tθ(s)
trained using CEM. This environment takes roughly
200,000 time steps to solve using PPO.

Figure 3.2: A screenshot of the CarGoal environment.
The goal region shown in the image is not observable by
the policy.

3.4 Experiments

3.4.1 Training Tθ(s), Tθ(a), and Tθ(h)

For this work, we have limited ourselves to affine T transformations (i.e. T (x) = Ax + b and θ = (A, b)),

which allows us to exploit a geometric prior common in robotics: that states and actions typically represent

the position or velocity of rigid bodies in SE(3), or other grounded physical quantities which can be aligned

between tasks using an affine transformation.

We find that gradient-based RL and IL methods (BC, AWR, and PPO) can encounter local optima and

have difficulty training such low-dimensional function approximators. However, we find that the Cross-

Entropy Method (CEM) can be used to reliably train the parameters of T . Furthermore, by using CEM with

a behavioral cloning loss, instead of Monte-Carlo estimates of expected returns, we are able to re-use a small

number of demonstration timesteps to train as success target policy using roughly 2000 timesteps of expert

demonstrations in the CarGoal environment. More details of these results can be seen in Figure 3.1.
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of hard switching during the training process for a variety
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switching. The base policies are three policies trained to
reach different goal regions in CarGoal. The target task
goal region is outside of the convex hull of those goal re-
gions.
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Figure 3.4: This figure shows the average switching rate
decreases as epsilon is increased. In conjunction with
Figure 3.3, it shows that a policy trained using our loss
function can switch policies relatively slowly without
any visible decrease in the success rate. In this exper-
iment, α = 0.9.

3.4.2 Training Wθ(s, τ)

In our experiments, we use a fully connected neural network followed by softmax to approximate Wθ(s, τ).

We find that it’s possible to infer θ by minimizing a standard behavioral cloning loss (BC) across the target

datasetDtarget. However, we would prefer target policies which switch between base policies less frequently.

To discourage switching, we regularize the standard cross-entropy loss between Wθ(s, τ) and the posterior

action probabilities πbase,τ (s, a), using the cross-entropy loss between Wθ(s, τ) and Wθ(s
′, τ), the weights

on adjacent states under the target dataset, and combine these terms using a coefficient α, which we typically

set slightly below 1. The effectiveness of this loss function can be seen in Figure 3.3 and Figure 3.4.

L(θ, s, a, s′) = αCE [Wθ(s, τ), π
base,τ (a|s))] + (1− α)CE [Wθ(s, τ),Wθ(s

′, τ)]

3.4.3 Environment

We use a simple goal-conditioned toy environment we call CarGoal, which is based on the CarRacing

environment from OpenAI Gym [11]. The objective of CarGoal is to drive a car to a goal point in the

environment, which is hidden from the policy. The policy is rewarded for pointing the car towards the goal,
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getting the car near the goal, and reaching the goal region. Reaching the goal region within 1000 time

steps is considered “success,” and terminates the episode. Different tasks in this environment correspond to

different goal points. A screenshot of CarGoal is shown in Figure 3.2.

3.5 Conclusion

Our results show that the combination of simple architectural approaches, a base set of black-box policies,

and simple optimization algorithms like CEM and SGD can produce strong off-distribution transfer results

in an environment with non-trivial dynamics. In the future, we look forward to applying these ideas to much

more complex problems using real and simulated robotics tasks, and using them to design algorithms for

continual robot learning.
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Chapter 4

The Transfer Cost Matrix and Single-Task Transfer

4.1 Introduction

Multi-task reinforcement learning (MTRL) methods that train a single neural network jointly on multiple

tasks have many potential advantages. If the tasks have shared structure, then joint training may be able

to learn to exploit that shared structure to learn faster or learn a higher performing policy [59, 130]. Fur-

thermore, some recent work has demonstrated that training a network which uses an appropriate latent task

representation can allow for generalization across the training tasks [61, 110, 44]. Despite these advantages,

there are also some reasons to train separate neural networks for each task in a set. In particular, the per-

formance of single-task policies continues to be higher than multi-task policies in many cases [130, 32].

Training separate policies for each task may also be more computationally efficient, since each optimization

step of a single task network only needs to update the small number of parameters for that task. In some of

the most comprehensive work on multi-task supervised learning, a mix of these approaches has been demon-

strated, with each task only using and updating a small sub-network of the full multi-task network [105].

Lastly, a training separate policy for each task allows achieving a minimum performance level on all tasks,

in contrast to several prior MTRL methods, which may achieve a high performance on average by ignoring

This chapter is based on K.R. Zentner et al. “Efficient Multi-Task Learning via Iterated Single-Task Transfer”. In: 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2022, pp. 10141–10146. DOI: 10 . 1109 /
IROS47612.2022.9981244.
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more difficult tasks. In this work we choose to investigate the case of MTRL via training separate policies

for each task. We further restrict ourselves to only transferring fully trained policies from one task to another

task using Proximal Policy Optimization [103] (PPO), with minimal modifications.

We contribute evidence towards answering three questions of interest in this setting:

1. How well, in principle, can this restricted form of transfer improve sample efficiency, if at all?

2. What conditions are required for this type of transfer to improve sample efficiency?

3. How do policies trained using transfer differ from those trained from scratch, if at all?

We also contribute a novel algorithm motivated by the answers to the above questions.

To investigate these questions, we conduct a series of experiments using the MetaWorld MT10 [131]

benchmark, which provides 10 related robotic control tasks each containing internal variation.

4.2 Setting

We are interested in acquiring policies for each task in a finite task space T . As is common in multi-task RL,

we presume all tasks in T share a single continuous state space S and continuous action space A, and the

MTRL problem is defined by the tuple (T ,S,A). Each task τ ∈ T is an infinite-horizon Markov decision

process (MDP) defined by the tuple τ = (S,A, pτ (s, a, s′), rτ (s, a, s′)). As tasks are differentiated only

by their reward functions rτ and state transition dynamics pτ , we may abbreviate this definition to simply

τ = (rτ , pτ ). Critically, we will assume that the order in which tasks are acquired can be controlled.

There are many possible ways of measuring the effectiveness of a learning procedure in multi-task learn-

ing. In this work, we focus on achieving a required level of performance S∗ for each task in T using as few

environment steps as possible. Notably, this is strictly more difficult than achieving the same performance

on average across all tasks. Further, we limit ourselves to repeatedly transferring a fully-trained policy from

one task (henceforth the “base” task) to another task (henceforth the “target” task). We will describe such
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transfer as “efficient” if it takes fewer environment steps to train a policy for the target task then training a

policy “from scratch” (i.e. using a randomly initialized policy).

4.3 Finding a Near Optimal Transfer Ordering

In Algorithm 1 we define a transfer procedure, which attempts to transfer from a policy πτ to a target task

τ ′ using PPO [103]:

Algorithm 1 TRANSFER PROCEDURE

1: Input: Base policy πbase, target task τ ′ ∈ T ,
target success rate S∗,
cutoff performance for each training epoch Mi

2: D0 ← run_policy(πbase, τ ′)
3: V0(s)← train_value_function(D0)
4: πτ ′ ← clone(πbase)
5: for i ∈ (1, . . .) do
6: Di ← ppo_step(πτ ′ , Vi−1, τ

′)
7: if performance(Di) ≥ S∗ then
8: return πτ ′

9: else if performance(Di) < Mi then
10: return Reject
11: end if
12: end for

Algorithm 1 is a slightly modified PPO used as a building block in Algorithm 2. If the value function is

not pre-trained, PPO rapidly destroys the policy before it can be transferred. On the benchmark that we are

experimenting with, PPO often fails to train a working policy, even during single-task learning. Therefore,

we have also added a rejecting rule, which rejects a training run if it begins to fail. Specifically, for each task

we have generated a smooth curve “cutoff curve” Mi from a successful training run delayed by 10% of the

training period, and reject the run if it falls behind this curve. This allows us to reliably complete enough

runs with PPO to acquire all of the tasks.

The first question we address is if such a simple transfer procedure can efficiently transfer policies from

one task to another. We evaluate this by training a base policy for each task in MT10, and then running a
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transfer using that policy to each target task in MT10. For each run we measure the number of environment

steps needed to reach a 90% success rate. The results are shown in Figure 4.2. Notably, some tasks can be

learned more quickly by transferring from another task than learning that task from scratch (as shown in the

last row of Figure 4.2). This shows that, potentially, this type of transfer could improve sample efficiency.

To evaluate this further, we assume that policies acquired through transfer will transfer as well as policies

learned from scratch. Under that assumption, the most efficient way of acquiring all tasks is to minimize the

total environment steps needed to acquire each task. This can be found by computing a Directed Minimum

Spanning Tree (DMST), rooted at the “from scratch” node, where the edges of the tree correspond to a series

of transfers. See Figure 4.4 for an example. Henceforth, we will refer to such trees, or an arbitrary ordering

of their edges consistent with traversal as a “curriculum”. A detailed description of this method is given in

Algorithm 2.
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Algorithm 2 DMST-BASED OPTIMAL TRANSFER

1: Input: task space T , target performance S∗

2: V ← T ∪ scratch
3: E ← {}
4: for τ ∈ T do
5: πτ , Cτ ← PPO(τ, πrandom)
6: E ← (scratch→ τ, Cτ )
7: for τ ′ ∈ T do
8: ·, Cτ→τ ′ ← PPO(τ ′, πτ )
9: E ← (τ → τ ′, Cτ→τ ′) ∪ E

10: end for
11: end for
12: Toptimal ← DMST(V,E)
13: πτ ← πrandom
14: for (τ → τ ′) ∈ traverse(Toptimal) do
15: while τ ′ not solved do
16: πτ ′ ← TRANSFERPROCEDURE(πτ , τ

′, S∗)
17: if (τ → τ ′) rejected then
18: E ← E \ (τ → τ ′)
19: Toptimal ← DMST(V,E)
20: end if
21: end while
22: end for

Algorithm 2: The for loop on line 4 computes Fig-
ure 4.2, by running PPO to transfer along each poten-
tial DMST “edge”, τ → τ ′, and computing the number
of environment steps Cτ→τ ′ to reach S∗.

Given this way of computing an optimal curriculum, we can also compute a pessimal curriculum and

random curricula. The results of actually running such curricula are shown in Figure 4.3. The plot shows that

the number of environment steps predicted by each type of curriculum match closely with the environment

steps actually used to train using that curriculum. This indicates that our assumption that policies training

from transfer will transfer similarly to policies trained from scratch is reasonable. Figure 4.3 also shows

that the optimal curriculum is, both in prediction and when run, more sample efficient than learning from

scratch. The rest of our work in this direction analyses the behavior of our transfer procedure with a eye

towards approximating this optimal curriculum.
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4.4 Conditions for Efficient Transfers

We have shown that, under ideal circumstances, a simple transfer procedure can improve sample efficiency

if applied to perform a carefully selected sequence of transfers. This makes predicting that set of transfers

potentially valuable, and naturally leads to the question of what properties of base and target task lead to

efficient transfers. Several prior works have attempted to predict transfer between tasks by measuring task

similarity [30, 32], including using the same benchmark we have chosen [110]. However, one very distinct

feature of transfer we observe in this setting is that it is very asymmetrical, as shown in Figure 4.2. This

implies that attempting to predict the contents of Figure 4.2 using symmetrical functions (including by pro-

jection into any metric space [59, 44]) will not be successful. Since we are not aware of any prior work which

is likely to be helpful in light of the above observation, we turn towards analyzing the specific properties of

Figure 4.2. The two most efficient tasks to transfer from, pick-place and button-press-topdown, de-

serve particular attention, since together they allow learning almost all other tasks very quickly, and neither

of them have other tasks that can be used to efficiently acquire them in turn.

Analyzing the behavior of these two policies on the tasks they transfer to shows that they tend to solve

these tasks very quickly because they contain all of the behavior necessary to solve the target task, as well

as some amount of additional behavior that does not prevent success at the target task. In other words, the

policies trained to solve these tasks are effective exploration policies for a large number of other tasks. In the

case of pick-place, this is because the policy has been trained using a large number of timesteps to operate

throughout the state space, and therefore rapidly generalizes to similar tasks that use a smaller portion of the

state space. In contrast, the button-press-topdown policy has been trained with relatively few timesteps,

on a task that requires relatively little precision. This results in a policy with highly stochastic behavior,

which is able to succeed at several tasks due to that stochastic behavior sometimes performing the necessary

manipulations.
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This trend, of policies with more general behavior transferring well to tasks with more specific require-

ments holds in other cases among this task set, such as push→ peg-insert-side, push→ window-open,

and push→ drawer-close. If this trend continues in other benchmarks, it may suggest an alternative ap-

proach to transfer learning in MDPs. In particular, instead of transferring between tasks on the basis of

similarity, transfer between tasks on the basis of one task being a more general case of the other may be

worth investigating.

4.5 Transfer Without Perfect Information

Although Algorithm 2 demonstrates that iterated single-task transfer has the potential for improving sample

efficiency in a multi-task setting, it does not provide a practical method, since it depends on the data in

Figure 4.2, which is more difficult to acquire than simply training each task from scratch. Furthermore,

Algorithm 1 implements a “rejection rule” using data from training each task from scratch. Although the

rejecting rule is necessary for efficient transfer (as shown in Figure 4.3, we would also like to avoid using

it because it requires the data from a successful training run of the same task that it is being used to solve.

In this section, we investigate one method for performing iterated single-task transfer without having access

to the data from Figure 4.2, or even the data needed for the rejection rule. This method, described in

Algorithm 3, performs inference to approximate the information in Figure 4.2 while simultaneously using

the inference state to direct training.
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Algorithm 3 DMST-INFERENCE BASED TRANSFER

1: Input: task space T , target performance S∗, maximum timesteps per task M
2: V ← T ∪ scratch
3: for τ ∈ V do
4: πBC,τ ← BC(τ)
5: for τ ′ ∈ T do
6: µτ→τ ′ ← M

1+2evaluate_policy(τ ′,πBC,τ )

7: θτ→τ ′ ←M
8: iτ→τ ′ ← 0
9: end for

10: end for
11: Tsolved ← {scratch}
12: while T ̸= Tsolved \ scratch do
13: Eτ→τ ′ ∼ Γ(θτ→τ ′ ;µτ→τ ′)− iτ→τ ′

14: (τ → τ ′)← select_edge(DMST(V,E), Tsolved)
15: if iτ→τ ′ = 0 then
16: D0 ← run_policy(πτ , τ ′)
17: V0(s)← train_value_function(D0)
18: πτ ′ ← clone(πτ )
19: end if
20: iτ→τ ′ ← 1 + iτ→τ ′

21: Di ← ppo_step(πτ ′ , Vi−1, τ
′)

22: θτ→τ ′ ← update_theta(θτ→τ ′ , Di, S
∗)

23: µτ→τ ′ ← update_mu(µτ→τ ′ , Di, S
∗)

24: if performance(Di) ≥ S∗ then
25: Tsolved ← Tsolved ∪ τ ′

26: end if
27: end while

Algorithm 3: The for loop on line 3 uses a small number of demonstrations to produce an unreliable

policy πBC,τ for each task, then evaluates it on each other task using evaluate_policy, which measures

the performance of the policy as defined by the environment. This cross-evaluation is then used to initialize

a belief state Γ(θτ→τ ′ ;µτ→τ ′) for each edge that estimates the number of environment steps to transfer

along that edge. The while loop on line 12 repeatedly samples edge costs Eτ→τ ′ from that belief state (line

13), computes an “optimal” curriculum given that sample (line 14), runs a PPO step along a viable edge of

that curriculum (line 21), then updates the belief state until every task has been solved (lines 22 and 23). A

“viable edge” is any edge (τ → τ ′) ∈ G such that τ ∈ Tsolved and τ ̸∈ Tsolved.
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Similarly to Algorithm 1, Algorithm 3 also pre-trains a value function when a new transfer is begun

(lines 16 and 17). This is necessary to prevent PPO from “forgetting” the behavior of πtau′ due to high-

variance policy gradient steps [35]. We considered using other deep RL algorithms, but it was not obvious

how to make equivalent modifications to them.

We use a Gamma distribution to model the belief of the number of training iterations remaining on an

edge, because its support matches the plausible beliefs after a number of timesteps have been observed.

The specific parameterization we use is a scale parameter θτ→τ ′ and an offset parameter µτ→τ ′ . The shape

parameter k is set to 2. update_mu and update_theta predict when training is expected to reach S∗ using

the performance found in Di, then use the empirical mean and variance of the last 10 predictions X for that

transfer to update θ =
√

Var(X )/k and µ = Mean(X ) − kθ. Once Di contains non-zero performance, a

linear projection X = i+ S∗−performance(Di)
performance(Di)−performance(Di−1)

is used to predict the remaining training epochs.

If no progress has been made so far, the prediction instead assumes that training will complete at a minimum

of X = 1.5i iterations.

Because Algorithm 3 predicts the costs of all edges, it is able to choose curricula based on their effi-

ciency from future edges using the DMST. Furthermore it is able to respond to transfers that “get stuck” in

a way similar to the rejection rule, without requiring data from any prior training of that task. One critical

component for achieving this result is the use of “BC cross-evaluation” to create a prior for the belief distri-

bution. Although the policies trained this way are unable to complete the tasks they are trained for reliably,

they still provide essential information, guiding the algorithm to first train policies for (.e.g pick-place

and push), which take more time to acquire than the tasks they are useful to transfer to. Without this prior

and the use of DMST, Algorithm 3 falls back to training each task from-scratch, with a small amount of

timesteps spent unsuccessfully on transfer edges.
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The predicted results of running Algorithm 3 1000 times are shown in Figure 4.5. Notably, the inference

often finds the optimal curriculum during training, as shown by the peak in the histogram at the far left.

However, there is a tail of runs that execute curricula that are much worse than training from scratch.

4.6 Conclusion

We have found that that performing the (near) optimal sequence of transfer is competitive with other multi-

task RL methods on the MetaWorld MT10 benchmark. In general, transferring from more “general” tasks,

such as pick-place or button-press-topdown can be very effective. Notably, the transfer relationships

we find appear to be highly asymmetrical, indicating that traditional “task similarity” approaches to transfer

are unlikely to succeed in this setting. Finally, we proposed an algorithm of performing this type of transfer

without prior knowledge of the optimal sequence, opening up the possibility to base practical methods on

those described in this work. In future work, we will improve on the proposed method and investigate

other benchmarks to see if these patterns conclusions hold across more settings. This will allow directly

comparing this work to other proposed multi-task RL methods.

Code for reproducing the results of this work is available at https://github.com/uscresl/iterated-policy-transfer.
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Figure 4.1: A graph of all tasks in MT10, and a subset of the possible edges between them. We are interested in transfers between
two tasks at a time, which correspond to edges in such a graph. Some parts of this work will also include a “random” or “from-
scratch” vertex.
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Figure 4.2: This figure shows the total number of environment steps in millions to reach 90% success rate on a target task, starting
with a policy trained on a base task, or trained from scratch. Black entries did not reach 90% success after 12 million timesteps.
All entries ran for at least 150,000 timesteps. Each column corresponds to all possible ways of attempting to train a policy to solve
a target task. Note the bottom row, which contains the time require to train each policy starting from a randomly initialized policy.
The diagonal confirms that each policy solves the task it was trained on within 1 more epoch of training.
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Figure 4.3: Comparison of the performance-sample efficiency frontier for several curricula for Meta-World MT10. The high level
of agreement between the actual and predicted curricula indicate that policies trained using transfer learning transfer just as well
as policies trained from scratch. This implies that the method we describe for approximating the optimal transfer in this setting
is nearly optimal. Note the solid blue line, which matches or improves on the efficiency of the from scratch curve for a range of
target success rates 80% ≤ S∗ ≤ 95%. This shows a potential improvement in sample efficiency greater than has been achieved
in other methods, such as [130]. Error bars show one standard deviation in number of total environment steps require to solve all
tasks. However, runs using the rejecting rule exhibit very low variance between runs. Pessimal curricula with the rejecting rule and
optimal curricula without the rejecting rule perform similarly to random curricula.
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Chapter 5

Predicting Transfer Costs with Behavior Distributions

5.1 Motivations

The transfer cost matrix described in Chapter 4 contains interesting structure describing the relationships

between tasks. Notably, there is significant variability in the number of training timesteps required to transfer

between different pairs of tasks. Furthermore, this structure is asymmetric, and thus not well explained by

prior work on the subject [30, 32]. This asymmetry posed a significant challenge, since any attempt to

predict transfer costs by defining a distance measure (including by learning a projection into any metric

space [59, 44]) results in a symmetrical prediction.

In this work, we propose a rule that explains a significant portion of the variability in transfer costs, and

in particular we are able to explain the strong asymmetry in transfer costs.

5.2 Definitions

5.2.1 Transfer and Sufficiency

Suppose we have a pair of tasks x and y, each of which is a distinct Markov Decision Process (MDP), with

its own dynamics ρ, reward function R(s, a), and average Rsuf . We will use ρz to indicate the dynamics of

This chapter is based on ongoing research.
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task z, πz to indicate a policy “sufficient policy,” with average reward Gz ≥ Rz
suf . We would like to be able

to predict the transfer cost Cx,y to (re-)train a policy πx to become sufficient on a task y.

5.2.2 Behavior Distribution

We define the behavior distribution Bx,y(a, s) as the distribution over state action pairs resulting from

running πx on task y.

For the specific case of an infinite horizon MDP, the behavior distribution can be defined recursively, as

follows:

Bx,y(s, a, s
′) = ρy(s′|a, s)πx(a|s)Bx,y(·, ·, s)

For finite horizon MDPs, the initial state distribution Sy
0 may have a non-trivial effect on Bx,y. In that

case, no closed-form definition of Bx,y exists, but Bx,y can be understood as the result of sampling from the

Markov Process produced by recursively sampling from ρy and πx starting from Sy
0 :

Bx,y(s, a) ∼ Sy
0 (s0)

∏
t=1

ρy(st+1|at, st)πx(at, st) (5.1)

The Behavior Distribution is useful because it is not a conditional distribution, and thus DKL is defined

across any two Behavior Distributions that have the same support set.

5.3 The Behavioral Transfer Cost Rule

We propose that the expected transfer cost Cx,y is a linear function of the Kullback-Leibler Divergence

(DKL) of Bx,y(s, a) and By,y(s, a), where the linear coefficient wy depends on the target task but does not
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depend on the base task. In other words, the following rule explains how costly transferring from each

possible base task will be for a single target task:

C[y ← x] = wyDKL [By,y(a, s)||Bx,y(a, s)]

The rule describes the cost to transfer a policy πx(a|s) to task y, where By,y is the behavior distribution

of a policy πy “nearest” to πx (i.e. the rule is implicitly minimized over πy). The scalar coefficient wy is a

constant coefficient specific to the RL algorithm and target task but independent of the policy that describes

the average “difficulty” of task y. We will analyze the interpretation of wy in Section 5.4.1.

5.4 Theory

5.4.1 Interpretation of the Behavioral Transfer Cost Rule

One interpretation of the KL Divergence is the measure of “relative entropy” between two distributions.

Under this interpretation, the KL Divergence DKL[B||A] computes the amount of information gain required

to update a prior distribution A to an updated believe B. From this interpretaion, wy can be seen as a

conversion factor between “nats” (the unit of information measured by the KL Divergence) and training

timesteps (the unit Cx,y is measured in).

Under this simplistic interpretation, sharing a single w value across all tasks may be viable. However,

it is likely the case that different tasks have different intrinsic amounts of information gain, and different

intrinsic difficulties. Consequently, it is not surprising that using a unique wy value for each task is mroe

effective.

The predictive power of Equation 5.2.2, is shown in Table 5.1. MT10 and MT50 refer to R2 values

averaged across all relevant tasks, with wy shared across transfer and from-scratch training runs within

MT10. The rows marked MT10 (Shared w) and MT50 (Shared w) instead used a single w value across all
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tasks. Although the R2 value for shared w is consistently lower, it still provides some ability to explain the

variation in transfer costs.

5.4.2 Conditions

Unfortunately, Equation 5.2.2 cannot hold in general for all RL algorithms. To understand why, con-

sider the counter-example of a simple RL algorithm that purposefuly wastes time when transferring from

pick-place, but otherwise performs optimally. Such an algorithm cannot be explained by Equation 5.2.2,

which expects all base tasks to be “treated equally.” Even if we assume that our RL algorithm “treats all

base tasks equally,” proving finite time convergence is an open problem for most RL algorithms. Instead,

we propose a simple model of an RL algorithm based on information theory, and show what conditions are

required for Equation 5.2.2 to apply to that model.

Many RL algorithms today cast RL as an inference problem over possible policies π(a|s). It is not

possible to tell if a given policy achieves a given average reward on a tasks without running the policy on

that task. However, given the behavior distribution Bi,y(s, a) of policy πi on task y, and the reward function

Ry(s, a), it is possible to directly compute if a policy is sufficient by computing the average reward by

weighting the reward acquired at each (s, a) pair by the portion of timesteps at that (s, a) pair.

Ry(s, a)Bi,y(s, a) ≥ Ry
suf

Consequently, we will consider our “model RL algorithm” to be performing inference on By,y(s, a),

using a series of intermediate approximations Bi,y(s, a). This RL algorithm starts with an initial poliy π0,

then repeatedly gathers a data batch Di and uses it to compute a better policy πi+1.

πi+1 = F (πi, Di)
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The scale of any such step is limited by the information Ii contained within Di. In particular, the

following constraint follows from the defintion of relative entropy: DKL[Bi+1,y||Bi,y] ≤ Ii. If we assume

that our RL algorithm is “information theoretically optimal,” then this bound should be followed exactly,

and we would expect it to find a sufficient policy after i steps, where i is the lowest value such that:

i∑
j=0

Ij ≈ DKL[By,y(a, s)||Bx,y(a, s)]

However, without a limit on Ii, this bound is meaningless.

In order for Equation 5.2.2 to hold, the total divergence of k steps, DKL[Bi+k,y||Bi,y] should be propor-

tional to the number of timesteps used (k|Di|) to infer Bi+k,y from Bi,y. One set of conditions under which

this proposition holds are the following:

1. The expected amount of information gain Ii from each batch of timesteps Di is constant, regardless

of the training step i or the base task x.

2. No other sources of information are present (such as information “hidden” in π0). In particular, any

prior information that does not contribute to the behavior distribution B0,y is forgotten, which we will

refer to as “forgetfulness.”

It is not clear why the first condition is true within our experimental setup. We can easily imagine

circumstances under which condition 1 is not true. For example, a pixel based environment containing a

map may provide very high information gain about sufficient behavior from a single state, and much less

information in later training steps. Regardless, this condition leads naturally to the hypothesis that our RL

algorithm will take equal sized “steps”, as measured by DKL[Bi+1,y||Bi,y]. The experimental results in

Figure 5.1 and Figure 5.2 show that this hypothesis holds for the majority of training time within a large

number of tasks in our experimental setup, although the first 10% of many transfer runs experience unusually

large steps. However, this condition could fail to hold for other sets of environments.
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Figure 5.1: The size of DKL[Bi+1,y||Bi,y] across training for all MT10 tasks for both from-scratch and transfer training. The X
axis shows the number of timesteps since the training ran began. Although large variations exist between each training step, as
predicted the expected step size does not significantly change throughout training. This data has been subsampled from 500 policy
improvement steps to 100 for legibility.
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Figure 5.2: The size of DKL[Bi+1,y||Bi,y] across training for all MT10 tasks for both from-scratch and transfer training. The X
axis shows the number of timesteps remaining to finish training a sufficient policy. Although large variations exist between each
training step, as predicted the expected step size does not significantly change throughout training. This data has been subsampled
from 500 policy improvement steps to 100 for legibility.
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Figure 5.3: Predicted transfer costs using Equation 5.2.2 using a shared w on the original data shown in Chapter 4.

5.5 Experimental Results

Figure 5.3 shows the performance of Equation 5.2.2 on the original transfer costs observed in Chapter 4.

For these results, the Meta-World scripted policies were used to collect 100 rollouts for each tasks. Then

the mean and covariances of those rollouts were used to approximate Bx,y(s, a) for each task pair as a

gaussian distribution. To avoid DKL being poorly defined, we added a small term to the diagonal of all

covariance matrices, ensuring that the resulting gaussian distributions had infinite support. Unfortunately,

using a scripted policy to approximate the behavior distribution is imprecise. However, Equation 5.2.2 is

still able to separate the majority of task pairs that cannot be completed within 12 million timesteps from

those that can be completed in less time.
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for specific x, i combinations are shown, with blue dots for from-scratch runs (x = scratch) and green x’s for transfer runs.

In order to get more detailed results, we ran FixPO ([134], also described in Chapter 7) 10 times on

each task in MT50, and recorded the mean and covariances of the sampled distributions at each of the 500

policy improvement steps. Then, we ran 100 transfer runs for each target task in MT10, using each of the

10 different policies trained for each of the 10 possible base tasks in MT10, and similarly recorded the mean

and covariances of intermediate data distributions. The results are shown below in Table 5.1. On all tasks

Equation 5.2.2 is able to at least partially explain variations (R2 > 0) in Cx,y, and is able to explain over

80% of the variation on some tasks (such as box-close).

Task R2 (Scratch) R2 (Transfer) R2 (Both)
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MT10 38% 35% 32%

MT50 37% N/A N/A

MT10 (Shared w) 23% 22% 22%

MT50 (Shared w) 13% N/A N/A

pick-place 65% 46% 43%

push 39% 44% 47%

reach 31% 25% 26%

door-open 38% 30% 28%

drawer-open 70% 39% 36%

drawer-close 29% 34% 37%

button-press-

topdown

42% 33% 32%

peg-insert-side 21% 34% 31%

window-open 23% 22% 20%

window-close 20% 44% 23%

assembly 14% N/A 14%

basketball 78% N/A 78%

bin-picking 73% N/A 73%

box-close 86% N/A 86%

button-press-

topdown-wall

22% N/A 22%

button-press 43% N/A 43%

button-press-wall 6% N/A 6%
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coffee-button 37% N/A 37%

coffee-pull 76% N/A 76%

coffee-push 57% N/A 57%

dial-turn 16% N/A 16%

disassemble 51% N/A 51%

door-close 12% N/A 12%

door-lock 11% N/A 11%

door-unlock 50% N/A 50%

hand-insert 37% N/A 37%

faucet-open 25% N/A 25%

faucet-close 23% N/A 23%

hammer 52% N/A 52%

handle-press-side 18% N/A 18%

handle-press 8% N/A 8%

handle-pull-side 11% N/A 11%

handle-pull 5% N/A 5%

lever-pull 58% N/A 58%

pick-place-wall 28% N/A 28%

pick-out-of-hole 64% N/A 64%

push-back 55% N/A 55%

plate-slide 28% N/A 28%

plate-slide-side 32% N/A 32%

plate-slide-back 23% N/A 23%
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plate-slide-back-side 27% N/A 27%

peg-unplug-side 19% N/A 19%

soccer 54% N/A 54%

stick-push 79% N/A 79%

stick-pull 70% N/A 70%

push-wall 36% N/A 36%

reach-wall 9% N/A 9%

shelf-place 33% N/A 33%

sweep-into 39% N/A 39%

sweep 32% N/A 32%

Table 5.1: Table of R2 applying the transfer cost rule to a dataset of 500 from-scratch FixPO runs and 1000 transfer FixPO runs.
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Chapter 6

Conditionally Combining Robot Skills using Large Language Models

6.1 Introduction

Combining skills to perform new tasks is an area of active research in machine learning and robotics. Skill

reuse has several potential advantages, such as allowing a robot to efficiently re-use data from old tasks to

rapidly learn new tasks. Sequencing skills might also help address the difficulty of learning long-horizon

tasks end-to-end. Here, we propose one way of using text to combine skills that leverages the capabilities of

recent large language models (LLMs).

Our approach uses a textual description of how to perform a task we term a “conditional plan.” A

conditional plan lists a set of skills to use to perform a task and associates a linguistic condition under

which each skill should be active. See Table 6.1 for an example. Because the plan expresses conditional

behavior, our method is able to make use of an LLM without querying it while the robot is performing

a task. Instead, a much simpler neural architecture with several orders of magnitude fewer parameters

implements the conditional behavior. This maintains the runtime efficiency of other end-to-end approaches

and allows fine-grained skills. Because the conditional plan contains natural language, it can also improve

interpretability and transparency by describing what skill the robot is using and why it is using it. Further,

This chapter is based on K. R. Zentner et al. “Conditionally Combining Robot Skills using Large Language Models”. In:
ArXiv abs/2310.17019 (2023). URL: https://api.semanticscholar.org/CorpusID:264490951.
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cage handle

mixed skillgrab handle

pull handle

Figure 6.1: This figure shows a simulated robot using our method. See Figure 6.5 for a detailed description of how it functions.

it provides additional control compared to other approaches using LLMs, since a human can inspect or edit

the conditional plan before it is used.

In Section 6.2 we extend the popular “Meta-World” benchmark to create “Language-World.” Language-

World includes a set of tools for working with language that allow us to evaluate our proposed method and

compare it to several ablations, including using an LLM directly.

In Section 7.2, we describe conditional plans and how we use an LLM to generate them. Then, we

propose a method called Plan Conditioned Behavioral Cloning to finetune the behavior of plans using end-

to-end demonstrations. Finally, we describe how to perform effective few-shot generalization using Cross-

Task Co-Learning, including using PCBC.

The primary contributions of this work are as follows:
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Condition Skill

the gripper is closed and not near the drawer handleopen the gripper
the gripper is not near the drawer handle move the gripper above the drawer handle
the gripper above the drawer handle move the gripper down around the drawer handle
the gripper is open and around the drawer close the gripper
the gripper is closed and around the drawer pull the drawer open

Table 6.1: Conditional Plan for drawer-open

1. A new benchmark, “Language-World,” which extends the Meta-World benchmark to make perform-

ing experiments with large language models on it practical.

2. A method, Plan Conditioned Behavioral Cloning (PCBC), that allows finetuning the behavior of high-

level plans using end-to-end demonstrations.

3. Experimental demonstrations that PCBC and Co-Learning are able to achieve strong few-shot gener-

alization results in “Language-World.”

6.2 Language-World

The Meta-World benchmark has emerged as a popular simulated environment for evaluating machine learn-

ing methods in the context of robotics, receiving over 150 citations in the past year alone. It provides 50

robotic manipulation tasks with a continuous range of random goals available for each task. The last year

has also seen a rapid increase in interest with using large language models (LLMs) for robotics. Ideally,

research using LLMs for robotics would use benchmarks that allow quantitative comparisons to methods

that do not use LLMs. Language-World makes it relatively easy to perform these comparisons by providing

three items that are useful, or necessary when using LLMs with Meta-World.

First, Language-World provides a brief natural-language description of each task e.g. “push the button

on the coffee machine.” Second, Language-World provides a query answering function (QAF), which al-

lows the evaluation of a semi-structured language query about a Meta-World state. This module performs
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similarly to a VQA model optimized for Meta-World, while avoiding the overhead of rendering images. By

using the query answering function, methods that use language but do not deeply integrate visual processing

with language can be efficiently evaluated on Meta-World tasks. The third item Language-World provides is

a set of 30 scripted skills. These scripted skills can be used to reliably perform all tasks in the MT10 task set

but can be applied to any of the 50 tasks. However, note that the method we propose in this work does not

use the scripted skills. These three items allow Language-World to be used to perform simulated robotics

experiments that can be easily compared to existing results in the literature.

Task Descriptions Each of the 50 tasks in MT50-language has a one-sentence natural language descrip-

tion of the task. These descriptions can be used in a variety of ways, such as for conditioning a multi-task

policy, or as inputs to an LLM. In our experiments below, we use these descriptions as conditioning in a

baseline method (Descriptor Conditioned BC), as well as to prompt an LLM to generate a plan in Plan

Conditioned BC.

Query Answering Function The Language-World query answering function (QAF) is able to evaluate

semi-structured textual queries on a Meta-World state. These queries resemble natural language e.g. “the

gripper is around the puck.” The QAF can evaluate 13 simple geometric relationships between all objects

in the task, such as “near,” “left of,” “in front of,” or “below.” The QAF can evaluate these relationships

between all objects in all 50 tasks, including the robot’s gripper as well as objects not present in the obser-

vation but at fixed locations, such as walls. It also can evaluate other useful cases, such as whether an object

is touching the table, or if the robot’s gripper is closed. Finally, this function can handle negation, simple

conjunctions of the above, and perform basic inference to identify repeated subjects, allowing evaluating

conditions like “Is the gripper open and not above the puck”. The QAF also provides a list of all supported
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queries, so queries outside of the supported set can be mapped to the nearest supported query using a sen-

tence embedding or using string edit distance. For simplicity of interpretation in this work, we use string

edit distance when necessary.

Scripted Skills Language-World provides 30 scripted skills, each of which has a brief natural language

description (e.g. “put the gripper above the drawer handle”). These scripted skills have been tested using a

hand-crafted mapping between queries and skills, and are able to perform all of the tasks in MT10-language

with a success rate of over 90%. These scripted skills are stateless linear controllers extracted from the

Meta-World scripted policies. Because most tasks require use of more than one skill, there are more skills

than tasks, even though some tasks share skills. We use these scripted skills to compare the performance

of 3 LLMs in Figure 6.2 and in evaluating different plan formats in Figure 6.4. However, we do not use

scripted skills in our remaining experiments.

Task Formalism Language-World uses the description of a task that is frequently used when performing

multi-task RL with Meta-World. Specifically, each of the 50 available named tasks τ is an infinite horizon

fully observable Markov Decision Process with a non-Markovian indicator function that measures success

on a given episode. The episodes of τ must be sampled using 500 sequential states, beginning with a random

initial state drawn from a continuous uniform distribution defined by the benchmark, as well as a randomized

goal (this configuration is sometimes referred to as MT10-rand or MT50-rand in the literature). We refer to

using the tasks from MT10 augmented with language as MT10-language, and equivalently with MT50 and

MT50-language. Note that MT10 is a subset of MT50.
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Figure 6.2: This figure shows the performance of different LLM’s on MT50-language using the scripted skills from MT10-language
as a cumulative distribution function over tasks. Conditional plans were evaluated using the method described in Section 6.3.2, and
this figure shows the range of performance across 4 plans per task for each LLM using the plan format that performed best with
that LLM. The LLMs are able to generalize to 5-10 additional tasks outside of MT10-language, despite using only scripted skills.
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6.3 Method

In this section, we propose a method for controlling a robot that makes use of language. We will later

evaluate this method using two of the tools described above in Language-World: the task descriptions and

query answering function (QAF).

Core Idea: The core idea of our method is to query the large language model (LLM) once per task to

produce a fixed mapping of queries to skills (a “conditional plan”). Then, at each state, we will use a query

evaluation module to evaluate each of those queries and perform a skill that corresponds to the true queries.

By designing a neural architecture that interprets conditional plans in an end-to-end differentiable way, we

are able to finetune the behavior of the generated plans from demonstrations, which we call plan conditioned

behavioral cloning (PCBC) and describe in detail in Section 6.3.3.

Besides the strong experimental results we present in Section 6.3.4, plan conditioning has several

promising conceptual aspects. By its design, plan conditioning splits the end-to-end problem into three

stages, while preserving the ability for end-to-end training. The first stage, plan generation (which we de-

scribe in Section 6.3.1), corresponds approximately to “task planning,” and can be performed before a task is

attempted, allowing oversight or input from a human operator. The second stage, query evaluation, permits

significant implementation flexibility. Query answering could be performed by a visual question answer

(VQA) model or using value functions (as in [3]) and finetuned as part of end-to-end training. Alternatively,

query answering could use any of a variety of perception methods that have been well-studied in the robotics

literature. As our experiments show, constraining the generated queries to those that the query-answering

module is engineered to perform can be highly effective. This allows leveraging “internet scale” models

without discarding the significant progress made in robotics perception methods. The third stage, action

decoding, could also be performed by a variety of methods, allowing for much higher control frequencies

than the query answering module.
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6.3.1 Conditional Plan Generation

In order to use a conditional plan to solve a task, we first must generate that plan. Formally, we consider

a conditional plan Pτ that describes how to perform some task τ to be a set of (condition, skill) tuples

(ci, ki), where each ki is a natural language description of a skill, which we will embed into a continuous

latent space. Depending on the benchmark ci is either a semi-structured condition (in Language-World), or

a natural language condition that can be evaluated by a visual question answering (VQA) model. Because

LLMs only generate text, in order to use them to generate a conditional plan we need a plan format that will

allow encoding and decoding conditional plans from text. We experiment with nine different plan formats,

and found that different plan formats perform best for different LLMs. For example, GPT-3.5, which has

been finetuned on markdown format text, performs best with basic_py_md.

To produce a prompt given a plan format, we first manually wrote plans for each of the tasks in MT10-

language. Then, we generated a prompt for each task in MT50-language by taking manually written plans

from three other tasks, and formatting them using the plan format. We chose the three other tasks by using

pick-place (because it contains a set of skills consistently useful across many tasks), as well as the two

other tasks which had task descriptions with the smallest string edit distance from the description of the task

we were prompting the LLM to generate a plan for. When prompting, we never provided a plan for the

task we were currently prompting for, to avoid the LLM repeating back the manually written plan. We end

the prompt with the name of the task as well as the task description, which is also encoded using the plan

format. We prompted each LLM four times for each combination of task and plan format.

6.3.2 LLM Experiments

In order to efficiently evaluate the performance of different combinations of LLM and plan format, we

ran each generated plan using the Language-World query answering function (QAF) and scripted skills.

Because the QAF only supports a finite set of (several hundred) semi-structured natural language queries,
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and the scripted skills consist of only 30 skills, this required us to map each condition ci to the nearest query

qi supported by the QAF, and each natural language skill ki to the scripted skill with the nearest description.

We experimented with using both distance in an embedding space as well as using string edit distance.

Because all LLMs fairly consistently matched the expected format, we found that edit distance performed

sufficiently well, and used that to perform this mapping. The best results for each LLM using these plans are

show in Figure 6.2. In Figure 6.4 we compare different plan formats using PaLM 2, showing the importance

of careful prompting to achieve the best results.

We call the best plan format we found chain_py, which uses a chain-of-thought [121] style prompt,

with conditions and skills both encoded in a format that appears similar to python code. An example of a

plan in this format can be seen in Figure 6.3.

6.3.3 Plan Conditioning

Running a conditional plan with a set of scripted skills does produce some amount of zero-shot generaliza-

tion. However, we would also like to be able to combine the advantages of conditional plans with end-to-end

machine learning—without requiring scripting skills. To that end, we define an end-to-end differentiable

neural architecture that interprets a conditional plan as follows. To perform a task τ using a conditional

plan Pτ , first we encode each skill description ki into a skill latent vector zi. Then, to select an action on a

particular state s, we evaluate each condition ci, to form an attention vector across each skill latent zi, and

use the softmax of that attention vector to mix the skill latents into a single skill latent zs. That skill latent

zs is then provided with the current state s to an action decoder, which produces an action for the state. The

skill encoding and action decoder are trained using data from multiple tasks, as described in Section 6.3.5.

See Figure 6.5 for a visual depiction of this process.
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# pick-place: pick up the puck and hold it at the target location
def pick_place(robot):

# Steps:
# 1. Put gripper above puck
# 2. Drop gripper around puck
# 3. Close gripper around puck
# 4. Move puck to goal
# First, put the gripper roughly above puck, so that we don't
# bump it while trying to grab it.
if check("the robot's gripper is not above the puck"):

robot.place("gripper above puck")
if check("the robot's gripper is not around puck and \

the robot's gripper is open"):
robot.drop("gripper around puck")

# If the gripper is near the puck and open, maybe we can grab
# it by closing the gripper.
if check("the robot's gripper is near puck and \

the robot's gripper is open"):
robot.close("gripper around puck")

# We closed the gripper, and the puck is still near the
# gripper, so maybe we grabbed it.
# Try to move the puck to the goal.
# If we didn't grab it, we'll just go back to an earlier step.
if check("the robot's gripper is above puck and \

the robot's gripper is closed"):
robot.place("puck at goal")

Figure 6.3: An example of the pick-place plan in the chain_py format. Although formatted as code, we do not evaluate this
code directly. In Section 6.3.3 we describe how to evaluate this code using PCBC, which allows finetuning the behavior of this
program using end-to-end demonstrations. Our method extracts the condition in each if statement, and transform each function
call into a skill description by turning the code into equivalent natural language. For example, robot.place("gripper above
puck") becomes the skill description “place the gripper above the puck,” via a simple regex search and replace.
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Figure 6.4: This figure shows the performance of PaLM 2 using different plan formats on MT50-language using the scripted skills
from MT10-language as a cumulative distribution function over tasks. Plan formats have a significant effect on performance,
varying the LLM from being able to barely perform 3 tasks to being able to reliably perform 15 tasks. Shaded region is between
minimum and maximum performance across 4 plans produced by the LLM for each task.
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Figure 6.5: This figure shows our proposed neural architecture and training setup on Language-World. The data setup for one-shot
training is shown on the left. PCBC finetunes the Action Decoder to match demonstrations using the MSE Loss, and produces
gradients that could be used to tune the QAF.

6.3.4 Conditional Plan Experiments

One of the most promising aspects of LLMs is their few-shot generalization capabilities. In this section

we present experiments that demonstrate PCBC’s ability to extend this few-shot generalization into the

robotics domain, and compare against an architecture that produces actions conditioned on only the task

description and state, which we call descriptor conditioning (DC). These experiments use the best of four

plans generated with the best (plan format, LLM) combination found in Section 6.3.2. We run both neural

architectures in three different data configurations shown in Table 6.2.
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Configuration MT10 Demos. MT50 Demos. #Models Scripted Skills

scripted skills 0 0 0 Yes

zero-shot 100 per task 0 1 No

few-shot 0 10 per task 1 No

one-shot 100 per task 1 per task 50 No

Table 6.2: Data used in Figures 6.6 and 6.7. We used the same data pipeline, loss function, and optimizer for PCBC and DC. In all
cases this is significantly less data than typically used by RL algorithms, which often require at least 10,000 episodes per task to
achieve a non-zero success rate.
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Figure 6.6: This figure shows both few-shot and zero-shot performance of plan conditioned behavioral cloning (PCBC) as well as
descriptor conditioning (DC) and scripted skills on MT50-language. Runs marked zero-shot were pre-trained from 100 demon-
strations of MT10-language and were only provided a task description for MT50-language. Runs marked few-shot received 10
demonstrations for each task in MT50-language, as well as a task description. In both cases, one “universal” policy is learned for
all tasks. End-to-end training improves over scripted skills, and plan conditioning (PCBC) maintains a higher consistent level of
performance across many tasks than descriptor conditioning (DC). Shaded region is between min and max performance across 4
seeds.
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Figure 6.7: This figure shows how adding a single demonstration to the zero-shot setting described in Figure 6.6 results in a signif-
icant increase in performance across several tasks, and non-zero performance on every task, despite each task having randomized
goal locations and initial states. The single demonstration of the MT50-language task is combined with 100 demonstrations of each
MT10-language task using the co-learning method described in Section 6.3.5 to train a single model for each task. Shaded region
is between minimum and maximum performance across 4 seeds.

6.3.5 Cross-Task Co-Learning via 1:1 Data Mixing

In zero-shot and few-shot training, we train a single “universal” policy to perform all tasks. We do this by

training on minibatches with an equal number of (task, state, action) tuples from each task. In the one-shot

data configuration, we instead seek to train a separate model for each target task from a single demonstration

of that task by leveraging demonstrations of other base tasks. We achieve this by using minibatches which

contain a mix of tuples sampled in equal number from all base tasks and an equal number of tuples sampled
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from the single target tasks demonstration, as shown in Figure 6.8. This follows prior work which found

such 1:1 (one-to-one) data mixing to be effective in deep Q learning methods [58, 71].
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Figure 6.8: A co-learning minibatch used in one-shot training. Each cell contains a (task, state, action) tuple which is used with
the end-to-end BC loss to optimize the policy. Because there are significantly more target task tuples than tuples for any particular
base task, the model will primarily be optimized for the target task while being regularized by the base task demonstrations. This
regularization allows the trained policy to be robust to randomizations in the initial and goal state of a task, despite being trained
on only a single demonstration with only a single initial state and goal state, as shown in Figure 6.7. Co-learning is able to achieve
this generalization without making strong assumptions about the structure of the observation or action space.

6.3.6 Differentiability and Optimization

PCBC essentially splits action selection into three steps: plan generation, query evaluation, and action de-

coding. In our experiments using Language-World, query evaluation is performed with the query answering

function, so only the action decoder is finetuned with gradient descent. In a real-world application of PCBC

using a visual question answer (VQA) model in place of the QAF, both of the VQA model and action de-

coder could be tuned with gradient descent. Our experiments also perform both query evaluation and action

decoding at each timestep. Although this already uses significantly less computational resources than eval-

uating a language model at each timestep, it may be possible to use fewer still computational resources by

performing query evaluation at a lower frequency than every timestep. Because the action decoder is trained

as part of the end-to-end objective, it is able to compensate for minor inconsistencies in the transition be-

tween skills, such as those a lag in evaluating queries would introduce.
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In this work we relied on the implicit regularization of small batch sizes (less than 200 total timesteps

per minibatch) to avoid overfitting to our small dataset. In future work, it would be worthwhile to combine

our method with regularization or contrastive learning techniques that may allow improving generalization

further while learning with larger batch sizes.

6.4 Limitations

Reinforcement Learning In this work we chose to focus on using imitation learning, because PCBC

required only a very small number of expert demonstrations to reach high performance. However, signifi-

cant prior research exists in using reinforcement learning (RL) for robotic control, and Meta-World (which

Language-World extends), is designed as a (Meta/Multi-Task) RL benchmark. In future work, it would be

worthwhile to experiment with using plan conditioning and RL, and Offline RL in particular.

Plan Quality In this work we use plans generated by large language models (LLMs). Although we ex-

perimented with a variety of plan formats, and ran each LLM multiple times for each (task, plan format)

combination, many of the generated plans were still low quality. We expect that further improvements in

prompting methods, which is an area of active research, may be able to improve our one-shot results further.

Alternatively, writing more plans by hand, either to use directly or to fine-tune an LLM, may be effective.

Plan Complexity In this work we explored conditioning on the steps of a plan. This is similar to evaluating

a single switch statement in an end-to-end differentiable way. In future work, we intend to explore using

end-to-end differentiable models of more complex computational constructs.
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6.5 Conclusion

In this work, we introduced a new benchmark, Language-World, which uses the same task as the popular

Meta-World benchmark, but extends it to allow it to be easily used in experiments with large language

models. We also introduced a method, plan conditioned behavioral cloning (PCBC), which serves as a

strong baseline imitation learning method for Language-World. By leveraging Cross-Task Co-Learning,

PCBC is able to achieve promising performance from a single demonstration per task, and extremely strong

performance at 100 demonstrations. In all cases, PCBC uses significantly less data than typically used by RL

algorithms on these same tasks, which often require at least 10,000 episodes to achieve a non-zero success

rate on a single task.
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Chapter 7

Guaranteed Trust Region Optimization via Two-Phase KL Penalization

7.1 Introduction

On-policy reinforcement learning (RL) methods seek to optimize a stochastic policy, where a neural network

is used to parameterize a distribution π(a|s) over actions conditioned on the current state. In this frame-

work, most on-policy RL methods seek to limit the scale of updates between successive policies during

optimization. Some on-policy RL methods operate by guaranteeing that each policy update remains within

a “trust region” [100]. These methods are used when training stability during a long period of training is

essential. However, finding a policy update near the edge of the trust region often comes at significant com-

putational cost. Another branch of on-policy methods instead perform “proximal” policy updates, that limit

the expected scale of policy updates, but can result in individual policy updates being of arbitrary magni-

tude [102]. These methods are much more computationally efficient, but large-scale training can require the

use of multiple training runs or human intervention to recover from training instabilities. In this work we

propose Fixup Policy Optimization (FixPO), which combines both a proximal primary phase with a precise

fixup phase, that operate by sharing a single penalty coefficient β. By performing a more conservative prox-

imal update before strictly enforcing a trust region, FixPO is able to approximately match the computational

This chapter is based on K. R. Zentner et al. “Guaranteed Trust Region Optimization via Two-Phase KL Penalization”. In:
ArXiv abs/2312.05405 (2023). URL: https://api.semanticscholar.org/CorpusID:266162918.
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efficiency and rewards of proximal methods while providing the same stability guarantees as trust region

methods.

An important result in the development of trust-region methods is a proof presented with the Trust

Region Policy Optimization algorithm (TRPO) [100] that for a particular value of C, iteratively applying

the following update provably results in monotonic improvement of the expected return of πi :

πi+1 = argmaxπ [Lπi(π)− CDmax
KL (πi, π)] (7.1)

where Lπi is the importance sampled “policy gradient” loss, Dmax
KL (πi, π) is the maximal value of the

Kullback-Leibler (KL) divergence between the action distributions of πi(s|a) and of π(s|a), and C is a

function of the characteristics of the Markov Decision Process (MDP). In practice, TRPO uses constrained

optimization to perform policy updates subject to a constraint on the average KL divergence instead of

only penalizing the maximal value. Due to constrained optimization preventing the use of minibatching

and increasing the computational cost of optimizing deep neural networks, Proximal Policy Optimization

algorithms [102] are more frequently used in practice. These methods do not guarantee that any precise trust

region constraint is enforced but approximately limit the scale of DKL(πi, π) .

The most well-studied PPO algorithm, often referred to as PPO-clip, or shortened to just PPO, operates

by zeroing the loss contribution from likelihood ratios outside of the range 1± ϵCLIP . Clipping in this way is

very computationally efficient and ensures that for each state, at most one gradient step is taken which could

increase the DKL(πi, π) beyond the trust region. However, another class of PPO algorithms also introduced

in [102] instead feature a policy update inspired by the theory above:

πi+1 = argmaxπ [Lπi(π)− βDKL(πi, π)] (7.2)
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In the above equation, β is a hyperparameter that is typically tuned dynamically in response to the scale

of recent policy updates as measured in DKL(πi, π). Although this PPO variant is believed to perform worse

than PPO-clip, its simplicity and connection to the above theory have made it a subject of study in several

later works, which have extended it in various ways.

In this work, we demonstrate that by rapidly adapting β, it is possible to nearly enforce a trust region.

Then, by performing a small number of additional gradient steps in a “fixup phase,” we can guarantee the

trust region is precisely enforced for a wide range of policy classes.

This work provides the following contributions:

1. An RL algorithm, FixPO, that efficiently enforces a guaranteed trust region between every policy

update using only KL penalization.

2. Experiments showing the performance of the proposed algorithm on a variety of benchmarks com-

pared to other trust region methods.

3. Ablation experiments showing the effect of each component of the proposed algorithm and why those

components are necessary.

7.2 Method

7.2.1 Loss Functions

Our method begins with the well-known loss function that results in policy updates that approximate Equa-

tion 7.2, also known as the KL regularized importance sampled policy gradient.

L(s, a, Â) = − πθ(a|s)
πθ′(a|s)

Â︸ ︷︷ ︸
Lπ

+β

LKL︷ ︸︸ ︷
DKL [πθ(a|s), πθ′(a|s)] (7.3)
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Where πθ is the policy undergoing the update, πθ′ is the policy from the previous step, and Â are

advantages estimated using GAE [101]. In order to define modified forms of this loss function, we also

define the individual components, Lπ and LKL, both of which will be used to optimize the policy parameters

θ.

We depart from [102] in how we acquire β. Instead of using a fixed value or dynamically tuning β on an

epoch-by-epoch manner, we instead tune β as a Lagrange multiplier using a loss similar to those described

in [111, 5]. However, we make two modifications that differ from the losses described in those works. First,

we enforce a target on Dmax
KL [πθ, πθ′ ], which is theoretically justified by Equation 7.2. Although typically

dismissed as fragile to outliers, we find that the maximal KL value is less sensitive to hyperparameter

choices, which we discuss in Section 7.3.1. Secondly, we add a term Cβ , which mirrors the C value in

Equation 7.2. This results in moving the optima of the Lagrangian optimization away from the constraint

surface, which we discuss in more detail in Paragraph 15. This results in the following loss, which tunes β

to approximately enforce the trust region constraint.

Lβ = β sg [ϵKL − CβD
max
KL [πθ, πθ′ ]] (7.4)

Where sg is the “stop-gradient” operator, which we include as a reminder that this loss function should

only be tuning β, and should not modify the policy parameters θ. ϵKL is a hyperparameter that controls

the size of the trust region, which performs a similar role as ϵCLIP in PPO-clip. Cβ moves the target of the

primary phase away from the edge of the trust region and compensates for bias introduced by computing

Dmax
KL on minibatches. When Cβ = 1, this loss function tunes β such that Dmax

KL ≈ ϵKL, by increasing β

when CβD
max
KL > ϵKL and decreasing β when CβD

max
KL < ϵKL. When Cβ > 1, optimizing Lβ results in

Dmax
KL ≈ ϵKL/Cβ < ϵKL. This difference between the expected convergence in the primary phase (ϵKL/Cβ)

and the exit condition of the fixup phase (ϵKL) is effective at limiting the number of iterations of the fixup

phase, as we show below.
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In practice, πθ and the value function may share some of the parameters θ, so the loss function on θ

includes a loss LVF on the value function. Typically, LVF will be the mean squared error of the predicted

returns, although value clipping may also be used [5], which most PPO implementations use by default.

Combining the policy gradient loss with the value function loss and KL penalty results in a comprehensive

loss on the neural network parameters that we use in Algorithm 1:

Lθ = Lπ + LVF + βLKL (7.5)

7.2.2 Fixup Phase

The most significant unique component of FixPO is the fixup phase, which runs after the primary phase.

In the primary phase (lines 5 - 7 in Algorithm 1), we repeatedly optimize γθLθ + γβLβ . By choosing γβ

such that γβ >> γθ (and Lθ and Lβ have similar scales), minimizing the weighted combination of the

losses results in approximate convergence to an optimum of Lβ ≈ 0. However, it is still possible that

Dmax
KL [πθ, πθ′ ] > ϵKL, and thus that the trust region constraint is not satisfied. To guarantee that the trust

region is enforced, the fixup phase iterates through all minibatches, and checks to see if the constraint is

satisfied at every state. If the constraint is not satisfied at any state, then the fixup phase performs an update

using γθLKL + γβLβ and resumes checking all minibatches, as described in lines 8 - 15 in Algorithm 1.

Fixup Phase Termination Because the fixup phase does not terminate until the trust region constraint is

satisfied, it is evident that the trust region constraint is enforced between every policy update. Although we

cannot guarantee the fixup phase terminates in general, there are strong reasons to expect it to terminate in

practical cases. Because LKL = 0 when θ = θ′, we know that a global optima of LKL = 0 exists. Therefore,

assuming the central result of [63] can be extended to this case, all local optima of LKL equal 0 for these

policy classes. Consequently, we can expect the fixup phase to terminate as long as it is able to optimize

LKL to a local optimum. In theory, convergence to such a local optima may take an arbitrary number of
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Figure 7.1: Number of gradient steps performed in the fixup phase throughout training on Walkder2d using different values of Cβ .
Larger Cβ values result in fewer gradient steps but may decrease performance. We found Cβ = 3 to perform well and requires only
5 − 10 additional gradient steps per policy improvement step, a small increase to the 160 gradient steps performed in the primary
phase. The shaded region is the standard error over 10 seeds. See the Cβ = 1 ablation in Figure 7.5 for details of how reward is
negatively affected by a low Cβ .
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Algorithm 1: FIXPO
Data: Policy πθ(a|s)
Data: Value Function Vθ(s)
Result: Optimized parameters θ∗

1 foreach i← 1 to n_policy_improvement_steps do
2 D ← rollout(πθ)
3 πθ′ ← πθ
4 foreach j ← 1 to n_epochs do
5 foreach (s, a, Â)← minibatch(D) do
6 θ ← θ − γθ∇Lθ(s, a, Â) using Equation 7.5
7 β ← β − γβ∇Lβ(s, a) using Equation 7.4

8 repeat
9 fixed← True

10 foreach (s, a)← minibatch(D) do
11 if any DKL [πθ(s), πθ′(s)] > ϵKL then

// Unset fixed so we re-check every state
12 fixed← False
13 θ ← θ − γθ∇βLKL(s, a) using Equation 7.3
14 β ← β − γβ∇Lβ(s, a) using Equation 7.4

15 until fixed

gradient steps, and require an arbitrarily low learning rate. By applying an upper bound to β and decreasing

γθ when LKL reaches a plateau, θ such that DKL < ϵKL can be guaranteed to eventually be found, although

without any upper bound on the runtime. In practice, using Cβ > 1 requires LKL to only be optimized to

near a local optimum for the trust region constraint to be satisfied, and consequently for sufficiently large

Cβ values the fixup phase only requires a very small number of gradient steps to terminate, as shown in

Figure 7.1.

Subroutines Algorithm 1 makes use of two subroutines, rollout and minibatch. rollout runs full

episodes of the policy πθ in the MDP, collects the resulting tuples, and computes advantages Â using a value

function (also parameterized by θ) and GAE [101]. minibatch splits the collected data into minibatches on

which we compute loss terms. Except when noted, we use the implementation of these routines typically

used in Tianshou [122].
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Figure 7.2: These figures show an example of the interaction between Dmax
KL (πθ, πθ′) (in red) and β (in blue) during two consecu-

tive policy improvement steps when Cβ = 3 (left), and during one policy improvement step when Cβ = 1 (right). Lβ increases β
when the red line is above ϵKL/Cβ . Solid green regions correspond to gradient steps performed in the fixup phase at the end of each
epoch. Vertical green lines show when the fixup phase performed zero gradient steps. Optimizing Lβ when Cβ = 3 (left) results
in Dmax

KL (πθ, πθ′) < ϵKL, requiring few gradient steps in the fixup phase (shown in green), to enforce the trust region. Optimizing
Lβ when Cβ = 1 (right) results in Dmax

KL (πθ, πθ′) ≈ ϵKL, requiring a large number of gradient steps in the fixup phase to enforce
the trust region.

Using Momentum Optimizers As is standard practice [5], we use Adam [64] (instead of SGD) to opti-

mize both θ and β. Therefore, in the initial gradient steps of the fixup phase, optimizing LKL also optimizes

Lθ, and optimizing Lθ in the next few iterations of the primary phase additionally optimizes LKL. We have

not found this to be a problem in practice using the default hyperparameters for Adam, as long as Cβ ≥ 2.

7.3 Experiments

7.3.1 Gym Mujoco Control Tasks

Our first experiments demonstrate that FixPO performs competitively to other trust region methods on the

Mujoco control tasks from the OpenAI Gym [12], a finite horizon, continuous action space RL benchmark.

We compare our implementation using the Tianshou RL framework [122] to the PPO-clip implementation

in that framework, as well as to the KL projection layer described in [84]. The results in Figure 7.3 show that
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FixPO is generally able to match or exceed other trust region methods on these tasks, and exhibits consistent

training stability.
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Figure 7.3: This figure shows the average total reward on the HalfCheetah, Hopper, Walker2d, Swimmer, InvertedDoublePendulum,
and Reacher environments as a function of the number of environment steps for FixPO, TRPO, PPO-clip, and the KL projection
proposed in [84]. Higher is better. The shaded region is a 95% confidence interval over 10 seeds. FixPO is able to outperform the
performance of the other methods on Walker2d, Swimmer, and InvertedDoublePendulum, and consistently avoids large decreases
in performance during training. For further analysis on rewards decreasing during training, see [48].

Hyper-Parameter Robustness FixPO appears to be highly robust to choices of hyperparameter values.

As we will show in Section 7.3.2, FixPO can perform moderately well with many of its components re-

moved in isolation. We performed hyperparameter sweeps for all of the major hyperparameters, notably

Cβ, ϵKL, γβ , the minibatch size, and the batch size. Changing these parameters within a wide range of

values had minimal effect on the algorithm’s wall-clock time and rewards. In particular, performance was

approximately equal while 0.1 ≤ ϵKL ≤ 0.5, 2 ≤ Cβ ≤ 10, 0.001 ≤ γβ ≤ 0.1, and the minibatch size was

not more than 512. This allows FixPO to use larger batch and minibatch sizes than the baseline algorithms,

allowing for faster wall-clock times in the following experiments. Other experiments we have performed

indicate that FixPO does not require the corrections to β described in [46], which we speculate is due to the
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constraint on DKL [πθ, πθ′ ] more closely following the trust region theory. This includes the Meta-World

benchmark, where PPO typically requires batch sizes of at least 50,000 timesteps to stabilize training.
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Figure 7.4: The standard deviation of the action distribution of
PPO-clip and FixPO during training on the Walker2d environ-
ment. Higher standard deviation corresponds to higher policy en-
tropy, which is known to result in more robust policies [28], but
can produce more variance in performance in the training task, as
shown in the HalfCheetah plot in Figure 7.3. The shaded region
is a 95% confidence interval over ≥ 10 seeds.

Higher Entropy Policies On these environments,

FixPO naturally learns a higher entropy policy

than PPO-clip, without using entropy regulariza-

tion. This confirms a pattern described in [84].

Figure 7.4 shows the relative standard deviation of

FixPO and PPO-clip on Walker2d.

7.3.2 Gym Mujoco Ablation Experiments

We performed a series of ablation experiments

using the Mujoco environments described above.

Each ablation experiment removes a unique com-

ponent of FixPO.

Remove Fixup Phase This ablation (labeled No Fixup Phase in Figure 7.5) removes the fixup phase

entirely, relying on only tuning β in the primary phase to enforce the trust region. This results in an algorithm

similar to those described in [5]. Although this ablation is able to perform well in most runs, we observe

poor performance in a portion of runs due to the trust region not being reliably enforced. This matches

the theoretical and experimental predictions made of KL regularized PPO in [48]. Although this ablation

achieves higher reward on most tasks than FixPO, it does not guarantee that the trust region is enforced,

which is the primary objective of FixPO.
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Limit the Mean KL Value This ablation (labeled Limit Mean KL in Figure 7.5) tunes β to limit the

mean value of the KL divergence, instead of limiting the maximal value using the following loss function:

Lβ = β sg [ϵKL − Cβ MeansDKL [πθ, πθ′ ]] (7.6)

This is similar to losses described in [111, 5] but using Cβ to adjust the optima. In this ablation, we

still run the fixup phase introduced in this work, but exit it once the mean KL divergence is less than the

target (i.e. DKL(s) ≤ ϵKL). We performed a hyper parameter sweep over ϵKL for each environment for the

ablation, and found this ablation to perform similarly to our proposed Lβ given an optimal ϵKL. Although

this ablation is able to reach similar rewards as FixPO, we believe the increased sensitivity to the value of

ϵKL makes it worse.

Lagrangian Optima on Constraint Boundary (Cβ = 1) In this ablation, we remove Cβ by setting it to 1.

This results in the optima of Lβ+Lθ being a θ such that Dmax
KL [πθ, πθ′ ] ≈ ϵKL. Due to the optima not being

reached exactly, and bias introduced by minibatching the losses, it is often the case that Dmax
KL [πθ, πθ′ ] is

significantly greater than ϵKL, requiring over 100 gradient steps in the fixup phase to correct and significant

wall-clock time. A large number of gradient steps in the fixup phase also appears to result in poor reward,

which we attribute to catastrophic forgetting in the value function network. See Figure 7.1 for the effect of

this ablation on the number of gradient steps in the fixup phase.

Only Run Fixup Phase in Last Epoch In this ablation, we move the fixup phase out of the epoch loop

and run it only between policy improvement steps after all epochs have been completed. Equivalently, we

run the fixup phase only on the last epoch of each policy improvement step. Due to only needing to enforce

the trust region between each policy update step (and not each epoch), this ablation still enforces the trust

region guarantee. This results in performing a smaller number of fixup phase gradient steps. However,
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Figure 7.5: This figure shows the average total reward on the HalfCheetah-v3, Hopper-v3, and Walker2d-v3 environments as a
function of the number of environment steps for each of the ablations described in Section 7.3.2. Higher is better. The shaded
region represents one standard error over 10 seeds. Plots have been smoothed with an exponential weighted moving average for
legibility.

we found that this ablation slightly decreased the rewards on most environments, including all shown here.

Decreasing the overall number of gradient steps by < 5% also did not measurably improve wall clock time.

If decreasing fixup phase gradient steps is absolutely necessary, increasing Cβ is more effective than this

ablation.

Use a Constant β = 10 In these experiments, we do not use Lβ , and use a constant value of β = 10.

The fixup phase is still performed. Equivalently, in these experiments γβ = 0. This ablation performs very

well on HalfCheetah, and moderately well on other environments. However, in some individual runs a large

number of gradient steps are necessary in the fixup loop, and rewards sometimes decrease significantly.

Notably, we were only able to perform this ablation because we observed that Lβ often tuned β to a value

between 5 and 20. We believe that the decrease in stability and the need to potentially tune β make this

ablation worse than the proposed method.

7.3.3 Meta-World Experiments

In this section, we use the Meta-World [131], a continuous action space infinite horizon RL benchmark,

to run a very large number of experiments comparing FixPO to other trust region methods. Due to these

tasks containing randomized goals and starting states, PPO-clip requires a very large batch size (50000), to
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Figure 7.6: In these experiments we ran 3 separate seeds for each of the 50 v2 tasks in MT50 (with randomized per-episode goals),
for each of three algorithms: FixPO, the KL projection from [84], and PPO [103]. All three plots show the average success rates
of the 150 runs per algorithm as an aggregate. On the left we show the average success rate during training vs. the number of
environment steps per run, with the uncertainty as standard error. All algorithms perform similarly, although [84] is slightly more
sample efficient early in training. In the right plot we show the average success rate as a function during training vs. the number of
hours spent training. Here we can see the computational overhead of the optimization used in [84], although performance between
algorithms is similar after six hours.

solve these tasks, or suffers from high instability when trainig. In Figure 7.6, we use 450 experiment runs

to demonstrate that FixPO is able to match the performance of other trust region methods, without requiring

a change in hyper parameters. In Figure 7.7, we perform some simple Transfer RL experiments that show

how FixPO is able to finetune without any special handling of the value function, such as described in [135].
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Figure 7.7: In these figures we show the results of some basic transfer learning experiments using the Meta-World MT10 benchmark.
For each algorithm, we pre-train a policy on the pick-place task, with randomized goal locations. Then, on the left, we show
the success rate of fine-tuning that pre-trained policy aggregated across all 10 tasks in MT10. Following this first finetuning, we
then finetune the policy back to the original pick-place task. In both cases, FixPO is able to achieve a higher success rate than
PPO-clip, and is able to effectively transfer without any additional modifications. Shaded area is standard error over ≥ 10 runs.
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Figure 7.8: Screenshots of three DMLab-30 used (Rooms Collect Good Objects Train, Rooms Select Nonmatching Object, and
Rooms Exploit Deferred Effects Train).

7.3.4 DMLab-30 Experiments

To demonstrate that FixPO is able to scale where constrained optimization (specifically [100]) cannot, we

implement FixPO in the popular sample-factory RL framework. This implementation of FixPO was

based on the highly performant implementation of APPO in sample-factory. We chose the DMLab-30

[7] environment because of its high dimensional visual observation space and partial observability, both

properties that make training policies with constrained optimization challenging due to the large number of

neural network parameters required.

We compared the reward of FixPO and APPO on three DMLab-30 tasks: rooms collect good objects

train, rooms select nonmatching object, and rooms exploit deferred effects train. To make the comparison

fair, FixPO uses the same hyperparameters as APPO, except for hyperparameters specific to FixPO, which

we set ϵKL = 1.0 and Cβ = 2. Figure 7.9 shows that FixPO is able to match the performance of APPO on

those tasks.
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Figure 7.9: Average episode rewards of FixPO and APPO on the tasks shown above. The performance of FixPO and APPO is
approximately equal in these tasks, and we are able to run FixPO for > 100M timesteps. The shaded region is the 95% confidence
bounds across 4 seeds.

7.4 Limitations

Multi-Task RL We experimented with running FixPO as a multi-task RL method on the DMLab-30

benchmark. However, we found that strictly applying the trust region constraint across all tasks simulta-

neously prevented progress from being made on multiple tasks at once. In the future, we would like to

experiment with using one β value per task, which may alleviate this limitation.

More Policy Architectures One of the advantages of FixPO relative to prior trust region methods is the

ability to combine minibatching with trust-region optimization of policies besides Gaussian policies (which

works such as [84] are limited to). Our DMLab-30 experiments show these capabilities in a discrete action

space, and we were also able to run our implementation using the Tianshou framework on the Arcade

Learning Environment [9]. However, further experiments with different action distributions would be a

useful direction for future work.

7.5 Conclusion

In this work we have shown how FixPO is able to combine the guarantees of trust region methods with

the computational efficiency and rewards of proximal methods. FixPO enforces its trust region via KL

penalization, which is flexible and well understood in the machine learning community. In future work, we

would like to extend our work to a multi-task setting.
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Chapter 8

Conclusions

8.1 Conclusions

When work on this thesis began in 2019, Transfer RL was a virtually unknown topic. At that time, Multi-

Task RL and Meta-RL were the two frameworks for data-reuse between tasks, with Meta-RL being far

more active than Multi-Task RL. Meta-World, which I helped improve and maintain throughout the work

on this thesis, was designed as a Meta-RL benchmark first, and Multi-Task RL a distant second. Most

people working on Transfer RL were attempting to perform specifically “sim2real” transfer, or were using

features from (frozen) pretrained perception networks, mostly Convolutional Neural Networks trained on

supervised categorization tasks like ImageNet. Since that time, interest in combining Transfer Learning

and Reinforcement Learning has increased significantly. Semi-supervised pretraining using autoregressive

or contrastive learning has produced neural network models with robust capabilities, but which require

Transfer Learning to be used effectively.

Of particular note among these pre-trained models is ChatGPT, which has re-oriented the field towards

large-scale Transfer Learning from internet data and the development of highly capable large language

models (LLMs). ChatGPT, and nearly all of the language models that have followed, combine pre-training

using autoregression on a large corpus of internet text, and transfer learning to perform a specific task

(usually question answering). This type of Transfer RL differs somewhat from what is described in this
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thesis, in that the base task (next word prediction across a large corpus) is qualitatively different from

the target task (producing useful responses to a user). Despite these differences, I expect this thesis to

remain relevant for some time. Many of these models are tuned specifically using Reinforcement Learning

from Human Feedback (RLHF), which combines Transfer Learning and Reinforcement Learning in a fairly

straightforward way. Notably, these approaches currently optimize for a task objective while remaining

proximal to the pre-trained autoregressive objective, a form of Offline RL. These proximality constraints,

usually enforced with KL penalties similar to those described in Chapter 7, ensure that the model does

not overfit to the learned reward model produced by RLHF, and prevent “forgetfulness,” as described in

Chapter 5. I expect that as we employ these LLMs on tasks with more robust and aligned reward functions,

the need for these proximality constraints will lessen, and the similarities to cross-task transfer, as described

in this thesis, will increase.

The following contributions of this thesis have the potential for long-term relevance to the field:

1. The recommendation to begin a Transfer RL run with training the value function with monte-carlo

returns, referred to as “Value Function Warmup” in Chapter 5.

2. The transfer cost rule, which is able to predict transfer costs:

Cx,y = wyDKL [By,y(s, a)||Bx,y(s, a)]

And which predicts that information gain about the sufficient behavior distribution is constant through-

out training.

3. The practice of using differentiable interpretation of Large Language Model outputs, to combine the

benefits of abstract reasoning with fine-grained decision making, such as described in Chapter 6.

80



4. Cross-task co-learning, and in particular balanced minibatches described in Section 6.3.5, which ap-

pear to be sufficient to induce positive cross-task transfer even in small models.

5. The observation that running a small number of extra KL penalization steps is enough to enforce

a hard trust region, and obviates the need for likelihood ratio clipping, as used in Proximal Policy

Optimization.

8.2 Future Directions

Broadly speaking, I see two families of future work from the thesis, with some overlap.

The discovery that the behavior distribution described in Chapter 5 has a close relationship to learn-

ing performance indicates a broad and fruitful direction for future work. Notably, the divergence between

behavior distributions is non-markovian, and therefore optimizing or constraining it with existing RL al-

gorithms is not possible. However, it may still be possible to develop tractable algorithms for performing

this optimization. These optimization algorithms might be able to provide stronger gaurantees than existing

algorithms, and provide a way of naturally incorporating demonstrations into RL training.

Secondly, there are many possible ways of improving Transfer RL by (efficiently) addressing forget-

fulness, or by transferring across larger task differences. Current approaches for avoiding forgetfulness

generally require regularizing with the original (often very large) pre-training dataset, or require freez-

ing early parameters. Overcoming forgetfulness by applying a more efficient regularization to the transfer

process continues to be an area of active research. Among other transfer capabilities, I expect that “cross-

morphology” and “slow-to-fast” transfer will become important in the future. It is difficult to collect demon-

strations of moving a robot optimally. However, slowly performing a demonstration is both easy and highly
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practical. If we can build robots that can transfer a slow third-person demonstration of a task to fast first-

person performance of the task, we will have made significant progress on the development of collaborative

robots.
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Appendices

A Appendix for Guaranteed Trust-Region Optimization via Two-Phase KL

Penalization

A.1 Compute Usage

Preliminary experiments were conducted using three heterogeneous workstations with at most 20 cores and

GPUs not more powerful than two nVidia Titan Xp each. Final experiments, including all sample-factory

experiments, were conducted over a two-week period using six servers with the following configuration:

Processor Intel Xeon Gold 6154
Base frequency 3.00 GHz
Physical cores 36
Logical cores 72

RAM 256 GB DDR4

GPUs 1 x nVidia RTX 2080Ti
GPU memory 11GB GDDR6

Table 8.1: Hardware setup used for final experiments.

A.2 Hyper Parameters

A.3 Explained Variance

Although the only plot in the main paper shows xPPO failing to train a value function, xPPO is able to train

a value function almost as well as PPO-clip in most circumstances, as shown in Figure 8.1.
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xPPO Gym

Hyperparameter Value

kl_loss_coeff_lr (γβ) 5

n_steps (|D|) 4096

batch_size (mini-batch size) 512

historic_buffer_size (|Dh|) 32000

target_kl (ϵKL) 0.2

use_beta_adam True

second_loop_batch_size (|sh|) 16,000

Table 8.2: Hyperparameters used for xPPO experiments on OpenAI Gym environments.

xPPO MT10

Hyperparameter Value

kl_loss_coeff_lr (γβ) 5

n_steps (|D|) 4096

batch_size (mini-batch size) 512

historic_buffer_size (|Dh|) 32000

target_kl (ϵKL) 0.02

use_beta_adam True

second_loop_batch_size (|sh|) 16,000

Table 8.3: Hyperparameters used for xPPO experiments on Meta-World MT10 environments.

xPPO Transfer MT10

Hyperparameter Value

kl_loss_coeff_lr (γβ) 3

n_steps (|D|) 4096

batch_size (mini-batch size) 512

historic_buffer_size (|Dh|) 32000

target_kl (ϵKL) 0.0015

use_beta_adam True

multi_step_trust_region True

second_loop_batch_size (|sh|) 16,000

Table 8.4: Hyperparameters used for xPPO transfer experiments on Meta-World MT10 environments.
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xPPO and APPO DMLab

Hyperparameter Value

Learning rate 10−4

Discount γ 0.99

Optimizer Adam

Optimizer settings β1 = 0.9, β2 = 0.999, ϵ = 10−6

Rollout length T 32

Batch size, samples 2048

Number of training epochs 1

Entropy coefficient 0.003

Table 8.5: Hyperparameters used for both xPPO and APPO on DMLab experiments.

Only for xPPO DMLab

Hyperparameter Value

target_kl (ϵKL) 0.02

kl_loss_coeff_lr (γβ) 5

kl_loss_coeff_momentum 0.999

Table 8.6: Hyperparameters only used for xPPO on DMLab experiments.
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Figure 8.1: Explained variance of xPPO and PPO on three different DMLab-30 tasks: collect good objects, select nonmatching
object, and exploit deferred effects. xPPO is able to fit a value function on these tasks approximately as well as PPO-clip. The
average reward of xPPO and APPO is also approximately equal in these tasks, and we are able to run xPPO for >100M timesteps.
Shaded region is 95% confidence bounds across 4 seeds.
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